Kurs:Analysis (Osnabrück 2014-2016)/Teil II/Vorlesung 41/latex

Aus Wikiversity

\setcounter{section}{41}

Es ist im Allgemeinen schwierig, eine Differentialgleichung explizit zu lösen. Wir besprechen daher ein approximierendes Verfahren, nämlich das \stichwort {eulersche Polygonzugverfahren} {.}






\zwischenueberschrift{Das Polygonzugverfahren}

Mit dem \zusatzklammer {eulerschen} {} {} Polygonzugverfahren wird die Lösungskurve einer Differentialgleichung diskret approximiert.




\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Euler method.png} }
\end{center}
\bildtext {} }

\bildlizenz { Euler method.png } {} {Oleg Alexandrov} {Commons} {PD} {}




\inputverfahren{}
{

Es sei ein \definitionsverweis {Vektorfeld}{}{} \maabbdisp {F} {G} {\R^d } {} auf einer offenen Menge
\mavergleichskette
{\vergleichskette
{G }
{ \subseteq }{ \R \times \R^d }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und eine Anfangsbedingung
\mavergleichskette
{\vergleichskette
{ y(t_0) }
{ = }{P }
{ \in }{ \R^d }
{ }{ }
{ }{ }
} {}{}{} gegeben. Das \stichwort {eulersche Polygonzugverfahren} {} funktioniert folgendermaßen: Man wählt eine Schrittweite
\mavergleichskette
{\vergleichskette
{s }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und berechnet rekursiv die Punktfolge
\mathbed {P_n} {}
{n \in \N} {}
{} {} {} {,} durch
\mavergleichskette
{\vergleichskette
{P_0 }
{ = }{P }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskettedisp
{\vergleichskette
{ P_{n+1} }
{ =} { P_n + s F(t_0+ns, P_n) }
{ } { }
{ } { }
{ } { }
} {}{}{.} Zu einem schon konstruierten Punkt $P_n$ wird also das $s$-fache des Richtungsvektors zum Zeitpunkt
\mathl{t_0+ns}{} an diesem Punkt hinzuaddiert. Dies funktioniert nur, solange die Punkte im Definitionsbereich des Vektorfeldes liegen. Der zu dieser Punktfolge gehörende \stichwort {Streckenzug} {} oder \stichwort {Polygonzug} {} \maabbdisp {\delta} {\R_{\geq t_0}} {\R^d } {} ist die lineare Interpolation mit
\mavergleichskette
{\vergleichskette
{ \delta (t_0+ns) }
{ = }{P_n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} d.h. für $t$ mit
\mavergleichskette
{\vergleichskette
{ t_0+ ns }
{ \leq }{ t }
{ \leq }{ t_0+(n+1)s }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskettedisp
{\vergleichskette
{ \delta(t) }
{ =} { P_n+ { \frac{ t- t_0-ns }{ s } } { \left( P_{n+1}-P_n \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Dieser Streckenzug $\delta$ stellt eine \definitionsverweis {stückweise lineare}{}{} Approximation der Lösungskurve des Anfangswertproblems dar. Für eine kleinere Schrittweite wird die Approximation im Allgemeinen besser.

}




\inputbeispiel{}
{

Bei einer eindimensionalen \definitionsverweis {ortsunabhängigen Differentialgleichung}{}{}
\mavergleichskettedisp
{\vergleichskette
{ y' }
{ =} { g(t) }
{ } { }
{ } { }
{ } { }
} {}{}{} ergibt sich $y$ einfach als eine \definitionsverweis {Stammfunktion}{}{} zu $g$. Wendet man in dieser Situation Verfahren 41.3 zum Startzeitpunkt $t_0$, zum Startpunkt $c$ und zur Schrittweite $s$ an, so ergibt sich die rekursive Beziehung
\mathdisp {P_0= c \text{ und } P_{n+1} = P_n +s g(t_0 + ns)} { . }
Daher ist offenbar
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ P_n }
{ =} { c + s { \left( g(t_0) + g(t_0 + s) + g(t_0 + 2s) + \cdots + g(t_0 + (n-1)s) \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.} D.h. dass man zu dem Ausgangswert $c$ das \definitionsverweis {Treppenintegral}{}{} zur äquidistanten Unterteilung
\mathl{t_0,t_0+s,t_0+2s , \ldots , t_0+ (n-1)s}{} \zusatzklammer {und zur durch \mathlk{g(t_0+ks)}{} auf dem Teilintervall
\mathl{[t_0+ks, t_0+(k+1)s[}{} gegebenen Treppenfunktion} {} {} hinzuaddiert. Der zugehörige Streckenzug ist die \zusatzklammer {stückweise lineare} {} {} Integralfunktion zu dieser Treppenfunktion.


}




\inputbeispiel{}
{

Wir wollen für das \definitionsverweis {Differentialgleichungssystem}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x' \\y' \end{pmatrix} }
{ =} { \begin{pmatrix} x^2-ty \\txy \end{pmatrix} }
{ =} { F(t,x,y) }
{ } { }
{ } { }
} {}{}{} mit der Anfangsbedingung
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x(0) \\y(0) \end{pmatrix} }
{ =} { \begin{pmatrix} 1 \\1 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} gemäß Verfahren 41.3 einen approximierenden Streckenzug berechnen. Wir wählen die Schrittweite
\mavergleichskette
{\vergleichskette
{s }
{ = }{ { \frac{ 1 }{ 10 } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Somit ist
\mavergleichskettedisp
{\vergleichskette
{ P_0 }
{ =} { \begin{pmatrix} 1 \\1 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{,}
\mavergleichskettedisp
{\vergleichskette
{ P_1 }
{ =} { P_0 + { \frac{ 1 }{ 10 } } F { \left( 0 , P_0 \right) } }
{ =} { \begin{pmatrix} 1 \\1 \end{pmatrix} + { \frac{ 1 }{ 10 } } \begin{pmatrix} 1 \\ 0 \end{pmatrix} }
{ =} { \begin{pmatrix} 1,1 \\ 1 \end{pmatrix} }
{ } {}
} {}{}{,}
\mavergleichskettealign
{\vergleichskettealign
{ P_2 }
{ =} { P_1 + { \frac{ 1 }{ 10 } } F { \left( { \frac{ 1 }{ 10 } } , P_1 \right) } }
{ =} { \begin{pmatrix} { \frac{ 11 }{ 10 } } \\ 1 \end{pmatrix} + { \frac{ 1 }{ 10 } } \begin{pmatrix} { \left( { \frac{ 11 }{ 10 } } \right) }^2 - { \frac{ 1 }{ 10 } } \cdot 1 \\ { \frac{ 1 }{ 10 } } \cdot { \frac{ 11 }{ 10 } } \cdot 1 \end{pmatrix} }
{ =} { \begin{pmatrix} { \frac{ 11 }{ 10 } } \\ 1 \end{pmatrix} + { \frac{ 1 }{ 10 } } \begin{pmatrix} { \frac{ 111 }{ 100 } } \\ { \frac{ 11 }{ 100 } } \end{pmatrix} }
{ =} { \begin{pmatrix} { \frac{ 1211 }{ 1000 } } \\ { \frac{ 1011 }{ 1000 } } \end{pmatrix} }
} {} {}{} und
\mavergleichskettealign
{\vergleichskettealign
{ P_3 }
{ =} { P_2 + { \frac{ 1 }{ 10 } } F { \left( { \frac{ 2 }{ 10 } } , P_2 \right) } }
{ =} { \begin{pmatrix} { \frac{ 1211 }{ 1000 } } \\ { \frac{ 1011 }{ 1000 } } \end{pmatrix} + { \frac{ 1 }{ 10 } } \begin{pmatrix} { \left( { \frac{ 1211 }{ 1000 } } \right) } ^2 - { \frac{ 2 }{ 10 } } \cdot { \frac{ 1011 }{ 1000 } } \\ { \frac{ 2 }{ 10 } } \cdot { \frac{ 1211 }{ 1000 } } \cdot { \frac{ 1011 }{ 1000 } } \end{pmatrix} }
{ =} { \begin{pmatrix} { \frac{ 1211 }{ 1000 } } \\ { \frac{ 1011 }{ 1000 } } \end{pmatrix} + { \frac{ 1 }{ 10 } } \begin{pmatrix} { \frac{ 1264321 }{ 1000000 } } \\ { \frac{ 2448642 }{ 10 000 000 } } \end{pmatrix} }
{ =} { \begin{pmatrix} { \frac{ 133743210 }{ 100 000 000 } } \\ { \frac{ 103548642 }{ 100 000 000 } } \end{pmatrix} }
} {} {}{.}


}






\zwischenueberschrift{Lineare Differentialgleichungssysteme}




\inputdefinition
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{I }
{ \subseteq }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {offenes reelles Intervall}{}{.} Eine \definitionsverweis {Differentialgleichung}{}{} der Form
\mavergleichskettedisp
{\vergleichskette
{v' }
{ =} {Mv }
{ } { }
{ } { }
{ } { }
} {}{}{,} wobei
\mavergleichskettedisp
{\vergleichskette
{M }
{ =} { \begin{pmatrix} a_{11 } & a_{1 2} & \ldots & a_{1 n } \\ a_{21 } & a_{2 2} & \ldots & a_{2 n } \\ \vdots & \vdots & \ddots & \vdots \\ a_{ n 1 } & a_{ n 2 } & \ldots & a_{ n n } \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} eine \definitionsverweis {Matrix}{}{} ist, deren Einträge allesamt \definitionsverweis {Funktionen}{}{} \maabbeledisp {a_{ij}} {I} {\R } {t} {a_{ij}(t) } {,} sind, heißt \definitionswort {homogene lineare gewöhnliche Differentialgleichung}{} oder \definitionswort {homogenes lineares gewöhnliches Differentialgleichungssystem}{.}

}

Es handelt sich also um die Differentialgleichung zum \definitionsverweis {Vektorfeld}{}{} \maabbeledisp {f} {I \times \R^n} {\R^n } {(t,v)} {f(t,v) = (M(t))v = \begin{pmatrix} a_{11}(t)v_1 + \cdots + a_{1n}(t)v_n \\\vdots\\ a_{n1}(t)v_1 + \cdots + a_{nn}(t)v_n \end{pmatrix} } {.}

Dieses Vektorfeld ist zu jedem fixierten Zeitpunkt
\mavergleichskette
{\vergleichskette
{t }
{ \in }{I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {lineare Abbildung}{}{} \maabbeledisp {} {{\R}^n} {{\R}^n } {v} {M(t)v } {.} Ausgeschrieben liegt das Differentialgleichungssystem
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} v'_1 \\\vdots\\ v'_n \end{pmatrix} }
{ =} { \begin{pmatrix} a_{11}(t)v_1 + \cdots + a_{1n}(t)v_n \\\vdots\\ a_{n1}(t)v_1 + \cdots + a_{nn}(t)v_n \end{pmatrix} }
{ =} { \begin{pmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & \ddots & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{pmatrix} \begin{pmatrix} v_1 \\\vdots\\ v_n \end{pmatrix} }
{ } { }
{ } { }
} {}{}{} vor. Es gibt immer die Nulllösung, also die konstante Abbildung mit dem Nullvektor als Wert, diese nennt man auch die triviale Lösung.

Für lineare Differentialgleichungssysteme gibt es wieder eine inhomogene Variante.


\inputdefinition
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{I }
{ \subseteq }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {offenes reelles Intervall}{}{.} Eine \definitionsverweis {Differentialgleichung}{}{} der Form
\mavergleichskettedisp
{\vergleichskette
{v' }
{ =} { Mv+z }
{ } { }
{ } { }
{ } { }
} {}{}{,} wobei
\mavergleichskettedisp
{\vergleichskette
{M }
{ =} { \begin{pmatrix} a_{11 } & a_{1 2} & \ldots & a_{1 n } \\ a_{21 } & a_{2 2} & \ldots & a_{2 n } \\ \vdots & \vdots & \ddots & \vdots \\ a_{ n 1 } & a_{ n 2 } & \ldots & a_{ n n } \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} eine \definitionsverweis {Matrix}{}{} ist, deren Einträge allesamt \definitionsverweis {Funktionen}{}{} \maabbeledisp {a_{ij}} {I} {\R } {t} {a_{ij}(t) } {,} sind und wobei \maabbeledisp {z} {I} {\R^n } {t} {z(t) = \begin{pmatrix} z_1(t) \\\vdots\\ z_n(t) \end{pmatrix} } {,} eine Abbildung ist, heißt \definitionswort {inhomogene lineare gewöhnliche Differentialgleichung}{} oder \definitionswort {inhomogenes lineares gewöhnliches Differentialgleichungssystem}{.} Die Abbildung $z$ heißt dabei \definitionswort {Störabbildung}{.}

}

Insgesamt liegt das Differentialgleichungssystem
\mavergleichskettealign
{\vergleichskettealign
{ \begin{pmatrix} v'_1 \\\vdots\\ v'_n \end{pmatrix} }
{ =} { \begin{pmatrix} a_{11}(t)v_1 + \cdots + a_{1n}(t)v_n +z_1(t) \\\vdots\\ a_{n1}(t)v_1 + \cdots + a_{nn}(t)v_n +z_n(t) \end{pmatrix} }
{ =} { \begin{pmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & \ddots & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{pmatrix} \begin{pmatrix} v_1 \\\vdots\\ v_n \end{pmatrix} + \begin{pmatrix} z_1(t) \\\vdots\\ z_n(t) \end{pmatrix} }
{ } { }
{ } {}
} {} {}{} vor.

Die explizite Lösbarkeit eines solchen Systems hängt natürlich von der Kompliziertheit der beteiligten Funktionen \mathkor {} {a_{ij}} {und} {z_i} {} ab. In der folgenden Situation kann man das System auf einzelne eindimensionale lineare inhomogene Differentialgleichungen zurückführen und dadurch sukzessive lösen.

\inputfaktbeweistrivial
{Lineares Differentialgleichungssystem/Trigonalgestalt/Sukzessive Lösbarkeit/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei
\mavergleichskette
{\vergleichskette
{ I }
{ \subseteq }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {offenes Intervall}{}{} und es liege eine \definitionsverweis {inhomogene lineare gewöhnliche Differentialgleichung}{}{} der Form
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} v_1 \\v_2\\ \vdots\\v_n \end{pmatrix}' }
{ =} { \begin{pmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix} \begin{pmatrix} v_1 \\v_2\\ \vdots\\v_n \end{pmatrix} + \begin{pmatrix} z_1 \\z_2\\ \vdots\\z_n \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} mit \definitionsverweis {stetigen Funktionen}{}{} \maabb {a_{ij}} {I} {\R } {} und \maabb {z_i} {I} {\R } {} und den Anfangsbedingungen
\mathdisp {v_i(t_0) =w_i \in \R \text{ für } i=1 , \ldots , n \,\, (t_0 \in I)} { }
vor.}
\faktfolgerung {Dann lässt sich diese Gleichung lösen, indem man sukzessive unter Verwendung der zuvor gefundenen Lösungen die \definitionsverweis {inhomogenen linearen gewöhnlichen Differentialgleichungen in einer Variablen}{}{,} nämlich
\mathdisp {v_n'= a_{nn}(t)v_n + z_n(t) \text{ mit } v_n(t_0)=w_n} { , }

\mathdisp {v_{n-1}'= a_{n-1\, n-1}(t)v_{n-1} +a_{n-1 \, n}(t) v_n(t)+ z_{n-1}(t) \text{ mit } v_{n-1}(t_0)=w_{n-1}} { , }

\mathdisp {v_{n-2}'= a_{n-2\, n-2}(t)v_{n-2} + a_{n-2 \, n-1}(t) v_{n-1}(t)+ a_{n-2 \, n}(t) v_{n}(t) + z_{n-2}(t) \text{ mit } v_{n-2}(t_0)=w_{n-2}} { , }

\mathdisp {\vdots} { }

\mathdisp {v_{1}'= a_{1 1}(t)v_{1} + a_{1 2}(t) v_{2}(t) + \cdots + a_{1n}(t) v_{n}(t) + z_{1}(t) \text{ mit } v_{1}(t_0)=w_{1}} { , }
löst.}
\faktzusatz {}
\faktzusatz {}


}


Die Lösungen eines solchen linearen Differentialgleichungssystems in oberer Dreiecksgestalt stehen also in Bijektion zu den Lösungen der $n$ linearen inhomogenen Differentialgleichungen in einer Ortsvariablen, wobei die Störfunktionen jeweils mit den anderen Lösungen in der beschriebenen Weise zusammenhängen. Insbesondere übertragen sich Existenz- und Eindeutigkeitsaussagen.

Auch wenn man ein homogenes System lösen möchte, so muss man in den Einzelschritten inhomogene Differentialgleichungen lösen.




\inputbeispiel{}
{

Wir betrachten das \definitionsverweis {homogene lineare Differentialgleichungssystem}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}^\prime }
{ =} { \begin{pmatrix} { \frac{ 1 }{ t } } & t-1 \\ 0 & { \frac{ 2t }{ t^2+1 } } \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} für
\mavergleichskette
{\vergleichskette
{t }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Die zweite Zeile dieses Systems bedeutet
\mavergleichskettedisp
{\vergleichskette
{ y' }
{ =} { { \frac{ 2t }{ t^2+1 } } \cdot y }
{ } { }
{ } { }
{ } { }
} {}{}{,} das ist eine homogene lineare Differentialgleichung in einer Variablen. Ihre Lösungen sind gemäß Satz 29.2 gleich
\mavergleichskettedisp
{\vergleichskette
{ y(t) }
{ =} { c { \left( t^2+1 \right) } }
{ =} { ct^2+c }
{ } { }
{ } { }
} {}{}{} mit einem
\mavergleichskette
{\vergleichskette
{c }
{ \in }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Die erste Zeile des Systems führt daher auf
\mavergleichskettealign
{\vergleichskettealign
{ x' }
{ =} { { \frac{ 1 }{ t } } x + (t-1) y }
{ =} { { \frac{ 1 }{ t } } x + c(t-1) { \left( t^2+1 \right) } }
{ =} { { \frac{ 1 }{ t } } x + c { \left( t^3-t^2+t-1 \right) } }
{ } { }
} {} {}{.} Dies ist eine \definitionsverweis {inhomogene lineare Differentialgleichung in einer Variablen}{}{.} Die zugehörige homogene Gleichung
\mavergleichskette
{\vergleichskette
{x' }
{ = }{ { \frac{ 1 }{ t } } x }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} besitzt $t$ als eine Lösung. Nach Satz 29.10 müssen wir eine Stammfunktion von
\mavergleichskettedisp
{\vergleichskette
{ c { \frac{ t^3-t^2+t-1 }{ t } } }
{ =} { c { \left( t^2-t+1- { \frac{ 1 }{ t } } \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} finden, eine solche ist
\mathdisp {c { \left( { \frac{ 1 }{ 3 } } t^3 - { \frac{ 1 }{ 2 } } t^2 +t - \ln t \right) } +d} { . }
Daher ist
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ t { \left( c { \left( { \frac{ 1 }{ 3 } } t^3 - { \frac{ 1 }{ 2 } } t^2 +t - \ln t \right) } +d \right) } }
{ =} { { \frac{ c }{ 3 } } t^4 - { \frac{ c }{ 2 } } t^3 +ct^2 - ct \ln t +d t }
{ } { }
{ } { }
{ } { }
} {}{}{} die allgemeine Lösung der inhomogenen Gleichung. Also ist die allgemeine Lösung des Systems gleich
\mathdisp {\begin{pmatrix} { \frac{ c }{ 3 } } t^4 - { \frac{ c }{ 2 } } t^3 +ct^2 - ct \ln t +d t \\ct^2+c \end{pmatrix}} { . }


}






\zwischenueberschrift{Lineare Differentialgleichungssysteme mit konstanten Koeffizienten}

Falls die Funktionen $a_{ij}$ alle konstant sind, so spricht man von einem \stichwort {linearen Differentialgleichungssystem mit konstanten Koeffizienten} {,} welche im Wesentlichen mit Mitteln der linearen Algebra gelöst werden können. Dazu ist es sinnvoll, von vornherein auch komplexe Koeffizienten zuzulassen.




\inputdefinition
{}
{

Eine \definitionsverweis {Differentialgleichung}{}{} der Form
\mavergleichskettedisp
{\vergleichskette
{v' }
{ =} { Mv }
{ } { }
{ } { }
{ } { }
} {}{}{,} wobei
\mavergleichskettedisp
{\vergleichskette
{M }
{ =} { \begin{pmatrix} a_{11 } & a_{1 2} & \ldots & a_{1 n } \\ a_{21 } & a_{2 2} & \ldots & a_{2 n } \\ \vdots & \vdots & \ddots & \vdots \\ a_{ n 1 } & a_{ n 2 } & \ldots & a_{ n n } \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} eine \definitionsverweis {Matrix}{}{} mit Einträgen
\mavergleichskette
{\vergleichskette
{ a_{ij} }
{ \in }{ {\mathbb C} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist, heißt \definitionswort {homogene lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten}{} oder \definitionswort {homogenes lineares gewöhnliches Differentialgleichungssystem mit konstanten Koeffizienten}{.}

}




\inputdefinition
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{I }
{ \subseteq }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {offenes Intervall}{}{.} Eine \definitionsverweis {Differentialgleichung}{}{} der Form
\mavergleichskettedisp
{\vergleichskette
{v' }
{ =} { Mv + z }
{ } { }
{ } { }
{ } { }
} {}{}{,} wobei
\mavergleichskette
{\vergleichskette
{M }
{ = }{ \begin{pmatrix} a_{11 } & a_{1 2} & \ldots & a_{1 n } \\ a_{21 } & a_{2 2} & \ldots & a_{2 n } \\ \vdots & \vdots & \ddots & \vdots \\ a_{ n 1 } & a_{ n 2 } & \ldots & a_{ n n } \end{pmatrix} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {Matrix}{}{} mit Einträgen
\mavergleichskette
{\vergleichskette
{a_{ij} }
{ \in }{ {\mathbb C} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist und \maabbdisp {z} {I} {{\mathbb C}^n } {} eine Abbildung, heißt \definitionswort {inhomogene lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten}{} oder \definitionswort {inhomogenes lineares gewöhnliches Differentialgleichungssystem mit konstanten Koeffizienten}{.}

} Die Störfunktion muss also nicht konstant sein.






\inputbemerkung
{}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{ y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1y' +a_0 y + f(t) }
{ =} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{} eine lineare \definitionsverweis {gewöhnliche Differentialgleichung höherer Ordnung}{}{} mit konstanten Koeffizienten, d.h. die $a_i$ sind reelle \zusatzklammer {oder komplexe} {} {} Zahlen. Das gemäß Lemma 40.14 zugehörige Differentialgleichungssystem
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} v_0 \\v_1\\ \vdots\\v_{n-2}\\ v_{n-1} \end{pmatrix}' }
{ =} { \begin{pmatrix} v_1 \\v_2\\ \vdots\\v_{n-1}\\ h(t, v_0,v_1 , \ldots , v_{n-1}) \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mavergleichskettedisp
{\vergleichskette
{ v_i }
{ \defeq} { y^{(i)} }
{ } { }
{ } { }
{ } { }
} {}{}{} und
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ h (t, v_0,v_1 , \ldots , v_{n-1}) }
{ \defeq} {-a_{n-1} v_{n-1} - \cdots - a_1y v_1-a_0 v_0 - f(t) }
{ } { }
{ } { }
{ } { }
} {}{}{} wird in dieser Situation zum \definitionsverweis {linearen Differentialgleichungssystem mit konstanten Koeffizienten}{}{}
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ \begin{pmatrix} v_0 \\v_1\\ \vdots\\v_{n-2}\\ v_{n-1} \end{pmatrix}' }
{ =} { \begin{pmatrix} 0 & 1 & 0 & \ldots & \ldots & 0 \\ 0 & 0 & 1 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots& \ddots & \ddots & \vdots \\ 0 & \ldots & \ldots & 0 & 1 & 0 \\ 0 & 0 & \ldots & \ldots & 0 & 1\\ -a_{0} & -a_1 & \ldots & \ldots & -a_{n-2} & -a_{n-1} \end{pmatrix} \begin{pmatrix} v_0 \\v_1\\ \vdots\\\vdots\\ v_{n-2}\\ v_{n-1} \end{pmatrix} + \begin{pmatrix} 0 \\0\\ \vdots\\\vdots\\ 0\\ -f(t) \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}