Zum Inhalt springen

Kurs:Diskrete Mathematik/23/Klausur mit Lösungen

Aus Wikiversity



Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Punkte 3 3 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 10




Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Geordnete Mengen/Abbildung/Antimonoton/Definition/Begriff
  2. Multinomialkoeffizient/Definition/Begriff
  3. Der Grad eines Punktes in einem Graphen .
  4. Ungerichteter Graph/Zusammenhängend/Definition/Begriff
  5. Ungerichteter Graph/Bipartit/Definition/Begriff
  6. Ungerichter Graph/Paarung/Punktabdeckung/Definition/Begriff


Lösung


Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

  1. /Fakt/Name
  2. /Fakt/Name
  3. /Fakt/Name


Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (4 Punkte)

Es sei und der zugehörige Restklassenring. Zeige, dass eine Einheit modulo genau dann ist, wenn und teilerfremd sind.


Lösung

Sind und teilerfremd, so gibt es nach Satz 6.1 (Diskrete Mathematik (Osnabrück 2020)) eine Darstellung der , es gibt also ganze Zahlen mit

Betrachtet man diese Gleichung modulo , so ergibt sich in . Damit ist eine Einheit mit Inversem .

Ist umgekehrt eine Einheit in , so gibt es ein mit in . Das bedeutet aber, dass ein Vielfaches von ist, sodass also

gilt. Dann ist aber wieder und und sind teilerfremd.


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung