Zum Inhalt springen

Kurs:Einführung in die Algebra (Osnabrück 2009)/Vorlesung 5/latex

Aus Wikiversity

\setcounter{section}{5}






\zwischenueberschrift{Gruppenhomomorphismen}




\inputdefinition
{}
{

Es seien \mathkor {} {(G, \circ, e_G)} {und} {(H, \circ, e_H)} {} \definitionsverweis {Gruppen}{}{.} Eine \definitionsverweis {Abbildung}{}{} \maabbdisp {\psi} {G} {H } {} heißt \definitionswort {Gruppenhomomorphismus}{,} wenn die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ \psi( g \circ g') }
{ =} { \psi (g) \circ \psi (g') }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{g,g' }
{ \in }{G }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt.

}

Die Menge der Gruppenhomomorphismen von $G$ nach $H$ wird mit
\mathdisp {\operatorname{Hom} \, (G,H)} { }
bezeichnet. Aus der linearen Algebra sind vermutlich die linearen Abbildungen zwischen Vektorräume bekannt, welche insbesondere Gruppenhomomorphismen sind, darüber hinaus aber auch noch mit der skalaren Multiplikation verträglich sind. Die folgenden beiden Lemmata folgen direkt aus der Definition.




\inputfaktbeweis
{Gruppenhomomorphismus/Inverses auf Inverses/Fakt}
{Lemma}
{}
{

\faktsituation {Es seien \mathkor {} {G} {und} {H} {} \definitionsverweis {Gruppen}{}{} und \maabb {\varphi} {G} {H } {} sei ein \definitionsverweis {Gruppenhomomorphismus}{}{.}}
\faktfolgerung {Dann ist
\mavergleichskette
{\vergleichskette
{ \varphi (e_G) }
{ = }{ e_H }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ (\varphi(g))^{-1} }
{ = }{ \varphi { \left( g^{-1} \right) } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für jedes
\mavergleichskette
{\vergleichskette
{ g }
{ \in }{ G }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktzusatz {}
\faktzusatz {}

}
{

\teilbeweis {}{}{}
{Zum Beweis der ersten Aussage betrachten wir
\mavergleichskettedisp
{\vergleichskette
{ \varphi(e_G) }
{ =} { \varphi(e_G e_G) }
{ =} { \varphi(e_G) \varphi(e_G) }
{ } { }
{ } { }
} {}{}{.} Durch Multiplikation mit
\mathl{\varphi(e_G)^{-1}}{} folgt
\mavergleichskette
{\vergleichskette
{ e_H }
{ = }{ \varphi(e_G) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
{} \teilbeweis {}{}{}
{Zum Beweis der zweiten Behauptung verwenden wir
\mavergleichskettedisp
{\vergleichskette
{ \varphi { \left( g^{-1} \right) } \varphi(g) }
{ =} { \varphi { \left( g^{-1} g \right) } }
{ =} { \varphi(e_G) }
{ =} { e_H }
{ } {}
} {}{}{.} Das heißt, dass
\mathl{\varphi { \left( g^{-1} \right) }}{} die Eigenschaft besitzt, die für das Inverse von
\mathl{\varphi(g)}{} charakteristisch ist. Da das Inverse in einer Gruppe nach Lemma 1.7 eindeutig bestimmt ist, muss
\mavergleichskette
{\vergleichskette
{ \varphi { \left( g^{-1} \right) } }
{ = }{ (\varphi(g))^{-1} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gelten.}
{}

}


\inputfaktbeweistrivial
{Gruppenhomomorphismus/Kategorielle Eigenschaften/Fakt}
{Lemma}
{}
{

\faktsituation {}
\faktvoraussetzung {Es seien
\mathl{F,G,H}{} \definitionsverweis {Gruppen}{}{.}}
\faktuebergang {Dann gelten folgende Eigenschaften.}
\faktfolgerung {\aufzaehlungvier{Die Identität \maabbdisp {\operatorname{Id}} { G} {G } {} ist ein \definitionsverweis {Gruppenhomomorphismus}{}{.} }{Sind \mathkor {} {\varphi:F \rightarrow G} {und} {\psi: G \rightarrow H} {} Gruppenhomomorphismen, so ist auch die Hintereinanderschaltung \maabb {\psi \circ \varphi} { F} {H } {} ein Gruppenhomomorphismus. }{Ist
\mavergleichskette
{\vergleichskette
{F }
{ \subseteq }{G }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {Untergruppe}{}{,} so ist die Inklusion
\mathl{F \hookrightarrow G}{} ein Gruppenhomomorphismus. }{Es sei $\{e\}$ die \definitionsverweis {triviale Gruppe}{}{.} Dann ist die Abbildung
\mathl{\{e\} \rightarrow G}{,} die $e$ auf $e_G$ schickt, ein Gruppenhomomorphismus. Ebenso ist die \zusatzklammer {konstante} {} {} Abbildung
\mathl{G \rightarrow \{e\}}{} ein Gruppenhomomorphismus. }}
\faktzusatz {}
\faktzusatz {}


}





\inputbeispiel{}
{

Betrachte die additive Gruppe der reellen Zahlen, also
\mathl{(\R, \! 0, \! +)}{,} und die multiplikative Gruppe der positiven reellen Zahlen, also
\mathl{(\R_+,1,\cdot )}{.} Dann ist die \definitionsverweis {Exponentialabbildung}{}{} \maabbeledisp {\exp} { \R } { \R_+ } { x } { \exp(x) } {,} ein \definitionsverweis {Gruppenisomorphismus}{}{.} Dies beruht auf grundlegenden analytischen Eigenschaften der Exponentialfunktion. Die Homomorphieeigenschaft ist lediglich eine Umformulierung der Funktionalgleichung der Exponentialfunktion
\mavergleichskettedisp
{\vergleichskette
{ \exp(x+y) }
{ =} { e^{x+y} }
{ =} { e^x e^y }
{ =} { \exp(x) \exp(y) }
{ } {}
} {}{}{.} Die Injektivität der Abbildung folgt aus der strengen Monotonie, die Surjektivität folgt aus dem Zwischenwertsatz. Die Umkehrabbildung ist der natürliche Logarithmus, der somit ebenfalls ein Gruppenisomorphismus ist.


}





\inputfaktbeweis
{Gruppenhomomorphismus/Z nach Gruppe/Fakt}
{Lemma}
{}
{

\faktsituation {}
\faktvoraussetzung {Es sei $G$ eine \definitionsverweis {Gruppe}{}{.}}
\faktfolgerung {Dann entsprechen sich eindeutig Gruppenelemente
\mavergleichskette
{\vergleichskette
{ g }
{ \in }{ G }
{ }{}
{ }{}
{ }{}
} {}{}{} und \definitionsverweis {Gruppenhomomorphismen}{}{} $\varphi$ von $\Z$ nach $G$ über die Korrespondenz
\mathdisp {g \longmapsto ( n \mapsto g^n ) \text{ und } \varphi \longmapsto \varphi(1)} { . }
}
\faktzusatz {}
\faktzusatz {}

}
{

Es sei
\mavergleichskette
{\vergleichskette
{ g }
{ \in }{ G }
{ }{}
{ }{}
{ }{}
} {}{}{} fixiert. Dass die Abbildung \maabbeledisp {\varphi_g} { \Z} {G } {n} {g^n } {,} ein \definitionsverweis {Gruppenhomomorphismus}{}{} ist, ist eine Umformulierung der Potenzgesetze. Wegen
\mavergleichskette
{\vergleichskette
{ \varphi_g(1) }
{ = }{ g^{1} }
{ = }{ g }
{ }{ }
{ }{ }
} {}{}{} erhält man aus der Potenzabbildung das Gruppenelement zurück. Umgekehrt ist ein Gruppenhomomorphismus \maabb {\varphi} {\Z} {G } {} durch
\mathl{\varphi(1)}{} eindeutig festgelegt, da
\mavergleichskette
{\vergleichskette
{ \varphi(n) }
{ = }{ (\varphi(1))^{n} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für $n$ positiv und
\mavergleichskette
{\vergleichskette
{ \varphi(n) }
{ = }{ { \left( (\varphi(1))^{-1} \right) }^{-n} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für $n$ negativ gelten muss.

}


Man kann den Inhalt dieses Lemmas auch kurz durch
\mathl{G \cong \operatorname{ Hom}_{ } ^{ } { \left( \Z,G \right) }}{} ausdrücken. Die Gruppenhomomorphismen von einer Gruppe $G$ nach $\Z$ sind schwieriger zu charakterisieren. Die Gruppenhomomorphismen von $\Z$ nach $\Z$ sind die Multiplikationen mit einer festen ganzen Zahl $a$, also \maabbeledisp {} {\Z} {\Z } {x} {ax } {.}






\zwischenueberschrift{Gruppenisomorphismen}




\inputdefinition
{}
{

Es seien \mathkor {} {G} {und} {H} {} \definitionsverweis {Gruppen}{}{.} Einen bijektiven \definitionsverweis {Gruppenhomomorphismus}{}{} \maabbdisp {\varphi} {G} {H } {} nennt man einen \definitionswort {Isomorphismus}{} \zusatzklammer {oder eine \definitionswort {Isomorphie}{}} {} {.}

}





\inputfaktbeweis
{Bijektiver Gruppenhomomorphismus/Umkehrabbildung ist homomorph/Fakt}
{Lemma}
{}
{

\faktsituation {Es seien \mathkor {} {G} {und} {H} {} \definitionsverweis {Gruppen}{}{} und sei \maabbdisp {\varphi} {G} {H } {} ein \definitionsverweis {Gruppenisomorphismus}{}{.}}
\faktfolgerung {Dann ist auch die Umkehrabbildung \maabbeledisp {\varphi^{-1}} {H} { G } {h} {\varphi^{-1}(h) } {,} ein Gruppenisomorphismus.}
\faktzusatz {}
\faktzusatz {}

}
{

Dies folgt aus
\mavergleichskettealign
{\vergleichskettealign
{ \varphi^{-1} (h_1h_2) }
{ =} { \varphi^{-1} { \left( \varphi (\varphi^{-1} (h_1)) \varphi (\varphi^{-1} ( h_2)) \right) } }
{ =} { \varphi^{-1} { \left( \varphi { \left( \varphi^{-1} (h_1) \varphi^{-1} ( h_2) \right) } \right) } }
{ =} { \varphi^{-1} (h_1) \varphi^{-1}(h_2) }
{ } {}
} {} {}{.}

}


Isomorphe Gruppen sind bezüglich ihrer gruppentheoretischen Eigenschaften als gleich anzusehen. Isomorphismen einer Gruppe auf sich selbst nennt man auch
\definitionswortenp{Automorphismen}{.} Wichtige Beispiele für Automorphismen sind die sogenannten inneren Automorphismen.




\inputdefinition
{}
{

Es sei $G$ eine \definitionsverweis {Gruppe}{}{} und
\mavergleichskette
{\vergleichskette
{ g }
{ \in }{ G }
{ }{}
{ }{}
{ }{}
} {}{}{} fixiert. Die durch $g$ definierte Abbildung \maabbeledisp {\kappa_g} {G} {G } {x} {gxg^{-1} } {,} heißt \definitionswort {innerer Automorphismus}{.}

}





\inputfaktbeweis
{Innerer Automorphismus/Ist Automorphismus/Fakt}
{Lemma}
{}
{

\faktsituation {}
\faktvoraussetzung {Ein \definitionsverweis {innerer Automorphismus}{}{} ist in der Tat}
\faktfolgerung {ein Automorphismus.}
\faktzusatz {Die Zuordnung \maabbeledisp {} { G } { \operatorname{Aut} \, G } { g } { \kappa_g } {,} ist ein \definitionsverweis {Gruppenhomomorphismus}{}{.}}
\faktzusatz {}

}
{

Es ist
\mavergleichskettedisp
{\vergleichskette
{\kappa_g(xy) }
{ =} {gxyg^{-1} }
{ =} {gxg^{-1}gyg^{-1} }
{ =} {\kappa_g(x) \kappa_g(y) }
{ } {}
} {}{}{,} sodass ein \definitionsverweis {Gruppenhomomorphismus}{}{} vorliegt. Wegen
\mavergleichskettedisp
{\vergleichskette
{ \kappa_g (\kappa_h(x)) }
{ =} { \kappa_g (hxh^{-1}) }
{ =} { ghxh^{-1}g^{-1} }
{ =} { ghx (gh)^{-1} }
{ =} { \kappa_{gh} }
} {}{}{} ist einerseits
\mavergleichskettedisp
{\vergleichskette
{ \kappa_{g^{-1} } \circ \kappa_g }
{ =} { \kappa_{g^{-1} g} }
{ =} { \operatorname{Id}_{ G } }
{ } {}
{ } {}
} {}{}{,} sodass $\kappa_g$ bijektiv, also ein Automorphismus, ist. Andererseits ist deshalb die Gesamtabbildung $\kappa$ ein Gruppenhomomorphismus.

}


Wenn $G$ eine kommutative Gruppe ist, so ist wegen
\mathl{gxg^{-1}=xgg^{-1}=x}{} die Identität der einzige innere Automorphismus. Der Begriff ist also nur bei nicht kommutativen Gruppen von Interesse.






\zwischenueberschrift{Der Kern eines Gruppenhomomorphismus}




\inputdefinition
{}
{

Es seien \mathkor {} {G} {und} {H} {} \definitionsverweis {Gruppen}{}{} und sei \maabbdisp {\varphi} {G} {H } {} ein \definitionsverweis {Gruppenhomomorphismus}{}{.} Dann nennt man das Urbild des neutralen Elementes den \definitionswort {Kern}{} von $\varphi$, geschrieben
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{kern} \varphi }
{ =} { \varphi^{-1}(e_H) }
{ =} { { \left\{ g \in G \mid \varphi(g)=e_H \right\} } }
{ } { }
{ } { }
} {}{}{.}

}





\inputfaktbeweis
{Gruppenhomomorphismus/Kern/Untergruppe/Fakt}
{Lemma}
{}
{

\faktsituation {Es seien \mathkor {} {G} {und} {H} {} \definitionsverweis {Gruppen}{}{} und sei \maabbdisp {\varphi} {G} {H } {} ein \definitionsverweis {Gruppenhomomorphismus}{}{.}}
\faktfolgerung {Dann ist der \definitionsverweis {Kern}{}{} von $\varphi$ eine \definitionsverweis {Untergruppe}{}{} von $G$.}
\faktzusatz {}
\faktzusatz {}

}
{

Wegen
\mavergleichskette
{\vergleichskette
{\varphi(e_G) }
{ = }{e_H }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskette
{\vergleichskette
{ e_G }
{ \in }{ \operatorname{kern} \varphi }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Seien
\mavergleichskette
{\vergleichskette
{ g,g' }
{ \in }{ \operatorname{kern} \varphi }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Dann ist
\mavergleichskettedisp
{\vergleichskette
{ \varphi(g g') }
{ =} { \varphi(g) \varphi(g') }
{ =} { e_H e_H }
{ =} { e_H }
{ } { }
} {}{}{} und daher ist auch
\mavergleichskette
{\vergleichskette
{ g g' }
{ \in }{ \operatorname{kern} \varphi }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Der Kern ist also ein Untermonoid. Es sei nun
\mavergleichskette
{\vergleichskette
{ g }
{ \in }{ \operatorname{kern} \varphi }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und betrachte das inverse Element $g^{-1}$. Nach Lemma 5.2 ist
\mavergleichskettedisp
{\vergleichskette
{ \varphi { \left( g^{-1} \right) } }
{ =} { (\varphi (g))^{-1} }
{ =} { e_H^{-1} }
{ =} { e_H }
{ } { }
} {}{}{,} also auch
\mavergleichskette
{\vergleichskette
{ g^{-1} }
{ \in }{ \operatorname{kern} \varphi }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}







\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Group_homomorphism.svg} }
\end{center}
\bildtext {} }

\bildlizenz { Group homomorphism.svg } {} {Cronholm 144} {Commons} {CC-by-Sa 2.5} {}





\inputfaktbeweis
{Gruppenhomomorphismus/Injektivität und Kern/Fakt}
{Lemma}
{}
{

\faktsituation {Es seien \mathkor {} {G} {und} {H} {} \definitionsverweis {Gruppen}{}{.}}
\faktfolgerung {Ein \definitionsverweis {Gruppenhomomorphismus}{}{} \maabb {\varphi} {G} {H } {} ist genau dann \definitionsverweis {injektiv}{}{,} wenn der \definitionsverweis {Kern}{}{} von $\varphi$ trivial ist.}
\faktzusatz {}
\faktzusatz {}

}
{

Wenn $\varphi$ injektiv ist, so darf auf jedes Element
\mavergleichskette
{\vergleichskette
{ h }
{ \in }{ H }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} höchstens ein Element aus $G$ gehen. Da $e_G$ auf $e_H$ geschickt wird, darf kein weiteres Element auf $e_H$ gehen, d.h.
\mavergleichskette
{\vergleichskette
{ \ker \varphi }
{ = }{ \{e_G\} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Es sei umgekehrt dies der Fall und sei angenommen, dass
\mavergleichskette
{\vergleichskette
{ g, \tilde{g} }
{ \in }{ G }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} beide auf
\mavergleichskette
{\vergleichskette
{ h }
{ \in }{ H }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} geschickt werden. Dann ist
\mavergleichskettedisp
{\vergleichskette
{ \varphi { \left( g \tilde{g}^{-1} \right) } }
{ =} { \varphi(g) \varphi (\tilde{g})^{-1} }
{ =} { h h^{-1} }
{ =} { e_H }
{ } { }
} {}{}{} und damit ist
\mavergleichskette
{\vergleichskette
{ g \tilde{g}^{-1} }
{ \in }{ \operatorname{kern} \varphi }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} also
\mavergleichskette
{\vergleichskette
{ g \tilde{g}^{-1} }
{ = }{ e_G }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} nach Voraussetzung und damit
\mavergleichskette
{\vergleichskette
{g }
{ = }{\tilde{g} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}






\zwischenueberschrift{Das Bild eines Gruppenhomomorphismus}





\inputfaktbeweis
{Gruppenhomomorphismus/Bild ist Untergruppe/Fakt}
{Lemma}
{}
{

\faktsituation {Es seien \mathkor {} {G} {und} {H} {} \definitionsverweis {Gruppen}{}{} und sei \maabbdisp {\varphi} {G} {H } {} ein \definitionsverweis {Gruppenhomomorphismus}{}{.}}
\faktfolgerung {Dann ist das \definitionsverweis {Bild}{}{} von $\varphi$ eine \definitionsverweis {Untergruppe}{}{} von $H$.}
\faktzusatz {}
\faktzusatz {}

}
{

Es sei
\mavergleichskette
{\vergleichskette
{B }
{ \defeq }{ \operatorname{bild} \varphi }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Dann ist
\mavergleichskette
{\vergleichskette
{e_H }
{ = }{\varphi(e_G) }
{ \in }{ B }
{ }{ }
{ }{ }
} {}{}{.} Es seien
\mavergleichskette
{\vergleichskette
{ h_1,h_2 }
{ \in }{ B }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Dann gibt es
\mavergleichskette
{\vergleichskette
{ g_1,g_2 }
{ \in }{ G }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit \mathkor {} {\varphi(g_1)=h_1} {und} {\varphi(g_2)=h_2} {.} Damit ist
\mavergleichskette
{\vergleichskette
{ h_1 \cdot h_2 }
{ = }{ \varphi(g_1) \cdot \varphi(g_2) }
{ = }{ \varphi(g_1 \cdot g_2) }
{ \in }{ B }
{ }{}
} {}{}{.} Ebenso gibt es für
\mavergleichskette
{\vergleichskette
{ h }
{ \in }{ B }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \mathkor {} {g \in G} {mit} {\varphi(g)=h} {.} Somit ist
\mavergleichskette
{\vergleichskette
{ h^{-1} }
{ = }{ (\varphi(g))^{-1} }
{ = }{ \varphi(g^{-1}) }
{ \in }{ B }
{ }{}
} {}{}{.}

}





\inputbeispiel{}
{

Betrachte die analytische Abbildung \maabbeledisp {} {\R} {{\mathbb C} } {t} {e^{ { \mathrm i} t}=\cos t + { \mathrm i} \sin t } {.} Aufgrund des Exponentialgesetzes \zusatzklammer {bzw. der Additionstheoreme für die trigonometrischen Funktionen} {} {} ist
\mavergleichskette
{\vergleichskette
{ e^{ { \mathrm i} (t+s)} }
{ = }{e^{ { \mathrm i} t} e^{ { \mathrm i} s} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Daher liegt ein \definitionsverweis {Gruppenhomomorphismus}{}{} von der additiven Gruppe
\mathl{(\R,+,0)}{} in die multiplikative Gruppe
\mathl{({\mathbb C}^{\times}, \cdot, 1)}{} vor. Wir bestimmen den \definitionsverweis {Kern}{}{} und das Bild dieser Abbildung. Für den Kern muss man diejenigen reellen Zahlen $t$ bestimmen, für die
\mathdisp {\cos t = 1 \text{ und } \sin t = 0} { }
ist. Aufgrund der Periodizität der trigonometrischen Funktionen ist dies genau dann der Fall, wenn $t$ ein ganzzahliges Vielfaches von $2 \pi$ ist. Der Kern ist also die \definitionsverweis {Untergruppe}{}{}
\mathl{2 \pi \Z}{.} Für einen Bildpunkt gilt
\mavergleichskette
{\vergleichskette
{ \betrag { e^{ { \mathrm i} t} } }
{ = }{\sin^2 t + \cos^2 t }
{ = }{1 }
{ }{}
{ }{}
} {}{}{,} sodass der Bildpunkt auf dem komplexen Einheitskreis liegt. Andererseits durchlaufen die trigonometrischen Funktionen den gesamten Einheitskreis, sodass die Bildgruppe der Einheitskreis mit der komplexen Multiplikation ist.


}



<< | Kurs:Einführung in die Algebra (Osnabrück 2009) | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)