Zum Inhalt springen

Kurs:Funktionentheorie/Beispielrechnung mit Laurentreihen

Aus Wikiversity

In dieser Lernresource werden gebrochen rationale Funktionen in Laurent-Reihen entwickelt, um das Residuum ablesen zu können.

Von einer gebrochen rationalen Funktion zur Laurent-Reihe

[Bearbeiten]

Gegeben ist zunächst eine einfache gebrochen-rationale Funktion der Form:

  • mit

Ziel ist die Entwicklung in eine Laurent-Reihe mit Entwicklungspunkt .

Definition von Konstanten

[Bearbeiten]

Wir definieren folgende weitere Konstanten, die für die bessere Sichtbarkeit der Operationen verwendet werden.

Umformung in eine Laurent-Reihe

[Bearbeiten]

Sei , dann gilt:

Das Residuum , da bei der Laurent-Entwicklung im Hauptteil nur die Koeffizienten 0 auftreten (d.h. der Hauptteil verschwindet).

Aufgaben

[Bearbeiten]
  • Warum benötigt man für die obige Berechnungen der Larent-Reihe (bzw. Potenzreihe) die Voraussetzung ?
  • Berechnen Sie die Laurentreihe für und geben Sie das Residuum der Laurententwicklung für in an!

Faktorisierte Potenzen mit Entwicklungspunkt im Nenner

[Bearbeiten]

Definition der Funktion g

[Bearbeiten]

Gegeben ist zunächst eine einfache gebrochen-rationale Funktion der Form:

  • mit

Ziel ist die Entwicklung in eine Laurent-Reihe mit Entwicklungspunkt .

Definition von Konstanten

[Bearbeiten]

Wir definieren folgende weitere Konstanten, die für die bessere Sichtbarkeit der Operationen verwendet werden.

Umformung in eine Laurent-Reihe

[Bearbeiten]

Das Residuum .

Laurent-Reihe mit unendlich vielen Summanden im Hauptteil

[Bearbeiten]

Gegeben ist zunächst eine einfache gebrochen-rationale Funktion der Form:

  • mit

Ziel ist die Entwicklung in eine Laurent-Reihe mit Entwicklungspunkt .

Definition von Konstanten

[Bearbeiten]

Wir definieren folgende weitere Konstanten, die für die bessere Sichtbarkeit der Operationen verwendet werden.

Umformung in eine Laurent-Reihe mit m=1

[Bearbeiten]

Das Residuum .

Umformung in eine Laurent-Reihe mit

[Bearbeiten]

Als Residuum für erhält man

Siehe auch

[Bearbeiten]