Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Arbeitsblatt 22/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

\setcounter{section}{22}






\zwischenueberschrift{Aufwärmaufgaben}




\inputaufgabe
{}
{

Bestimme das \definitionsverweis {Taylor-Polynom}{}{} vom Grad $4$ der Funktion \maabbeledisp {} {\R} {\R } {x} { \sin x \cos x } {,} im Nullpunkt.

}
{} {}




\inputaufgabe
{}
{

Bestimme sämtliche \definitionsverweis {Taylor-Polynome}{}{} der Funktion
\mavergleichskettedisp
{\vergleichskette
{f(x) }
{ =} {x^4-2x^3+2x^2-3x+5 }
{ } { }
{ } { }
{ } { }
} {}{}{} im Entwicklungspunkt
\mavergleichskette
{\vergleichskette
{a }
{ = }{3 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Es sei $\sum _{ n= 0}^\infty c_n (x-a)^{ n }$ eine \definitionsverweis {konvergente Potenzreihe}{}{.} Bestimme die \definitionsverweis {Ableitungen}{}{} $f^{(k)}(a)$.

}
{} {}




\inputaufgabe
{}
{

Es sei $p \in \R[Y]$ ein \definitionsverweis {Polynom}{}{} und \maabbeledisp {g} { \R_+} {\R } {x} { g(x) = p { \left( \frac{1}{x} \right) } e^{- \frac{1}{x} } } {.} Zeige, dass die \definitionsverweis {Ableitung}{}{} $g'(x)$ ebenfalls von der Form
\mavergleichskettedisp
{\vergleichskette
{ g'(x) }
{ =} {q { \left( \frac{1}{x} \right) } e^{- \frac{1}{x} } }
{ } { }
{ } { }
{ } { }
} {}{}{} mit einem weiteren Polynom $q$ ist.

}
{} {}




\inputaufgabe
{}
{

Wir betrachten die Funktion \maabbeledisp {f} {\R_+} {\R } {x} {f(x) = e^{- \frac{1}{x} } } {.} Zeige, dass für jedes $n \in \N$ die $n$-te \definitionsverweis {Ableitung}{}{}
\mathl{f^{(n)}}{} die Eigenschaft
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{lim}_{ x \in \R_+ , \, x \rightarrow 0 } \, f^{(n)}(x) }
{ =} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{} besitzt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Bestimme die Taylor-Reihe der Funktion
\mavergleichskette
{\vergleichskette
{f(x) }
{ = }{ { \frac{ 1 }{ x } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} im Punkt
\mavergleichskette
{\vergleichskette
{a }
{ = }{2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} bis zur Ordnung $4$ \zusatzklammer {man gebe also das Taylor-Polynom vom Grad $4$ zum Entwicklungspunkt $2$ an, wobei die Koeffizienten in einer möglichst einfachen Form angegeben werden sollen} {} {.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Bestimme das Taylor-Polynom vom Grad $3$ zur Funktion
\mavergleichskettedisp
{\vergleichskette
{f(x) }
{ =} {x \cdot \sin x }
{ } { }
{ } { }
{ } { }
} {}{}{} im Entwicklungspunkt
\mavergleichskette
{\vergleichskette
{a }
{ = }{ { \frac{ \pi }{ 2 } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Es sei \maabbeledisp {f} {\R} {\R } {x} {f(x) } {,} eine \definitionsverweis {differenzierbare Funktion}{}{} mit den Eigenschaften
\mathdisp {f'=f \text{ und } f(0)=1} { . }
Zeige, dass
\mavergleichskette
{\vergleichskette
{f(x) }
{ = }{\exp x }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{x }
{ \in }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Bestimme das \definitionsverweis {Taylor-Polynom}{}{} bis zur vierten Ordnung der Umkehrfunktion des \definitionsverweis {Sinus}{}{} im Punkt $0$ mit dem in Bemerkung 22.8 beschriebenen Potenzreihenansatz.

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{4}
{

Bestimme die Taylor-Polynome im Entwicklungspunkt $0$ bis zum Grad $4$ der Funktion \maabbeledisp {f} {\R} {\R } {x} { \sin \left( \cos x \right) + x^3 \exp \left( x^2 \right) } {.}

}
{} {}




\inputaufgabe
{4}
{

Diskutiere den Funktionsverlauf der \definitionsverweis {Funktion}{}{} \maabbeledisp {f} {[0,2 \pi]} {\R } {x} {f(x) = { \left( \sin x \right) } { \left( \cos x \right) } } {,} hinsichtlich \definitionsverweis {Nullstellen}{}{,} \definitionsverweis {Wachstumsverhalten}{}{,} \zusatzklammer {\definitionsverweis {lokale}{}{}} {} {} \definitionsverweis {Extrema}{}{.} Skizziere den \definitionsverweis {Funktionsgraphen}{}{.}

}
{} {}




\inputaufgabe
{4}
{

Diskutiere den Funktionsverlauf der \definitionsverweis {Funktion}{}{} \maabbeledisp {f} {[- { \frac{ \pi }{ 2 } } ,{ \frac{ \pi }{ 2 } }]} {\R } {x} {f(x) = \sin^{ 3 } x - { \frac{ 1 }{ 4 } } \sin x } {,} hinsichtlich \definitionsverweis {Nullstellen}{}{,} \definitionsverweis {Wachstumsverhalten}{}{,} \zusatzklammer {\definitionsverweis {lokale}{}{}} {} {} \definitionsverweis {Extrema}{}{.} Skizziere den \definitionsverweis {Funktionsgraphen}{}{.}

}
{} {}




\inputaufgabe
{4}
{

Bestimme das \definitionsverweis {Taylor-Polynom}{}{} bis zur vierten Ordnung des \definitionsverweis {natürlichen Logarithmus}{}{} im Punkt $1$ mit dem in Bemerkung 22.8 beschriebenen Potenzreihenansatz aus der Potenzreihe der Exponentialfunktion.

}
{} {}




\inputaufgabe
{6}
{

Zu
\mathl{n \geq 3}{} sei
\mathl{A_n}{} der Flächeninhalt eines in den Einheitskreis eingeschriebenen gleichmäßigen $n$-Eckes. Zeige
\mathl{A_n \leq A_{n+1}}{.}

}
{} {}



<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >>

PDF-Version dieses Arbeitsblattes (PDF englisch)

Zur Vorlesung (PDF)