Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Arbeitsblatt 22

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Aufwärmaufgaben

Aufgabe

Bestimme das Taylor-Polynom vom Grad der Funktion

im Nullpunkt.


Aufgabe

Bestimme sämtliche Taylor-Polynome der Funktion

im Entwicklungspunkt .


Aufgabe

Es sei eine konvergente Potenzreihe. Bestimme die Ableitungen .


Aufgabe

Es sei ein Polynom und

Zeige, dass die Ableitung ebenfalls von der Form

mit einem weiteren Polynom ist.


Aufgabe

Wir betrachten die Funktion

Zeige, dass für jedes die -te Ableitung die Eigenschaft

besitzt.


Aufgabe *

Bestimme die Taylor-Reihe der Funktion im Punkt bis zur Ordnung (man gebe also das Taylor-Polynom vom Grad zum Entwicklungspunkt an, wobei die Koeffizienten in einer möglichst einfachen Form angegeben werden sollen).


Aufgabe *

Bestimme das Taylor-Polynom vom Grad zur Funktion

im Entwicklungspunkt .


Aufgabe

Es sei

eine differenzierbare Funktion mit den Eigenschaften

Zeige, dass für alle ist.


Aufgabe

Bestimme das Taylor-Polynom bis zur vierten Ordnung der Umkehrfunktion des Sinus im Punkt mit dem in Bemerkung 22.8 beschriebenen Potenzreihenansatz.




Aufgaben zum Abgeben

Aufgabe (4 Punkte)

Bestimme die Taylor-Polynome im Entwicklungspunkt bis zum Grad der Funktion


Aufgabe (4 Punkte)

Diskutiere den Funktionsverlauf der Funktion

hinsichtlich Nullstellen, Wachstumsverhalten, (lokale) Extrema. Skizziere den Funktionsgraphen.


Aufgabe (4 Punkte)

Diskutiere den Funktionsverlauf der Funktion

hinsichtlich Nullstellen, Wachstumsverhalten, (lokale) Extrema. Skizziere den Funktionsgraphen.


Aufgabe (4 Punkte)

Bestimme das Taylor-Polynom bis zur vierten Ordnung des natürlichen Logarithmus im Punkt mit dem in Bemerkung 22.8 beschriebenen Potenzreihenansatz aus der Potenzreihe der Exponentialfunktion.


Aufgabe (6 Punkte)

Zu sei der Flächeninhalt eines in den Einheitskreis eingeschriebenen gleichmäßigen -Eckes. Zeige .




<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >>

PDF-Version dieses Arbeitsblattes (PDF englisch)

Zur Vorlesung (PDF)