Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II/Arbeitsblatt 48/latex

Aus Wikiversity

\setcounter{section}{48}






\zwischenueberschrift{Aufwärmaufgaben}




\inputaufgabe
{}
{

Bestimme das \definitionsverweis {Taylor-Polynom}{}{} vom Grad $\leq 3$ für die \definitionsverweis {Funktion}{}{} \maabbeledisp {} { \R^2} {\R } {(x,y)} {x^2 -y \cdot \sin x } {,}

im Nullpunkt
\mathl{(0,0)}{.}

}
{} {}




\inputaufgabe
{}
{

Notiere das \definitionsverweis {Taylor-Polynom}{}{} für eine \zusatzklammer {hinreichend oft \definitionsverweis {differenzierbare}{}{}} {} {} Funktion in \mathkor {} {2} {oder} {3} {} Variablen für die Grade
\mathl{k=1,2,3}{.}

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} \definitionsverweis {reeller Vektorraum}{}{,}
\mathl{G \subseteq V}{} \definitionsverweis {offen}{}{,}
\mathl{P \in G}{} und seien \maabbdisp {f,g} {G} {\R } {} zwei zweimal \definitionsverweis {stetig differenzierbare Funktionen}{}{.} Zeige durch ein Beispiel, dass das \definitionsverweis {Taylor-Polynom}{}{} zum Produkt $fg$ im Punkt $P$ vom Grad $\leq 2$ nicht das Produkt der beiden Taylor-Polynome von \mathkor {} {f} {und} {g} {} in
\mathl{P}{} vom Grad $\leq 1$ sein muss.

}
{} {}




\inputaufgabe
{}
{


a) Schreibe das \definitionsverweis {Polynom}{}{}
\mathdisp {f=3x^3-4x^2y+2xy-x+5y} { }
als Polynom in den Variablen
\mathl{u=x-2}{} und
\mathl{v=y+1}{.}


b) Bestimme mit Teil a) die \definitionsverweis {Taylor-Polynome}{}{} von $f$ im Entwicklungspunkt
\mathl{(2,-1)}{.}


c) Berechne diese Taylor-Polynome über Ableitungen.

}
{} {}




\inputaufgabe
{}
{

Bestätige Satz 48.1 für
\mathl{f(x,y)=x^ay^b}{} in
\mathl{(0,0)}{} und
\mathl{v=(2,3)}{} bis zur dritten Ableitung.

}
{} {}

In den folgenden Aufgaben werden einige Eigenschaften der Polynomialkoeffizienten besprochen, die eine Verallgemeinerung der Binomialkoeffizienten sind.

Es sei
\mavergleichskette
{\vergleichskette
{ n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ r }
{ = }{ (r_1, \ldots , r_{n}) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein $n$-\definitionsverweis {Tupel}{}{} natürlicher Zahlen. Es sei $k \defeq \sum_{ j=1}^{n} r_{ j }$. Dann nennt man die Zahl
\mavergleichskettedisp
{\vergleichskette
{ \binom { k } { r } }
{ =} { { \frac{ {k}! }{ r_1! r_2! \cdots r_{n}! } } }
{ } { }
{ } { }
{ } { }
} {}{}{} einen \definitionswort {Polynomialkoeffizienten}{.}





\inputaufgabe
{}
{

Zeige, dass die Anzahl der geordneten \definitionsverweis {Partitionen}{}{} mit eventuell leeren Blöcken zum Anzahltupel
\mavergleichskette
{\vergleichskette
{r }
{ = }{(r_1 , \ldots , r_k) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} einer $n$-elementigen Menge gleich
\mavergleichskettedisp
{\vergleichskette
{ \binom{n}{r} }
{ =} { { \frac{ n! }{ r_1! \cdots r_k! } } }
{ } { }
{ } { }
{ } { }
} {}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

In einem Studium werden $11$ Leistungsnachweise verlangt, und zwar $3$ Seminarscheine, $5$ Klausuren, $2$ mündliche Prüfungen und eine Hausarbeit, die in beliebiger Reihenfolge erbracht werden können. Wie viele Reihenfolgen gibt es, um diese Leistungsnachweise zu erbringen?

}
{} {}




\inputaufgabe
{}
{

Es seien
\mavergleichskette
{\vergleichskette
{k,n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{r }
{ = }{(r_1 , \ldots , r_n) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{ \sum_{j = 1}^k r_j }
{ = }{ n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass die Anzahl der $n$-Tupel
\mathdisp {(j_1 , \ldots , j_n) \in \{ 1 , \ldots , k \}^n} { , }
in denen die Zahl $j$ genau $r_j$-mal vorkommt, gleich
\mavergleichskettedisp
{\vergleichskette
{ \binom{n}{r} }
{ =} { { \frac{ n! }{ r_1! \cdots r_k! } } }
{ } { }
{ } { }
{ } { }
} {}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es seien
\mavergleichskette
{\vergleichskette
{n,k }
{ \in }{\N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{r }
{ = }{(r_1 , \ldots , r_k) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{}
{ n }{}
{ }{}
{ }{}
{ }{}
} {}{}{.} Zeige, dass die Anzahl der \definitionsverweis {Abbildungen}{}{} \maabbdisp {} { { \{ 1 , \ldots , n \} } } { \{ 1 , \ldots , k \} } {,} bei denen das \definitionsverweis {Urbild}{}{} zu
\mavergleichskette
{\vergleichskette
{j }
{ \in }{ { \{ 1 , \ldots , n \} } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} aus genau
\mathl{r_j}{} Elementen besteht, gleich dem \definitionsverweis {Multinomialkoeffizienten}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \binom{n}{r} }
{ =} { { \frac{ n! }{ r_1! \cdots r_k! } } }
{ } { }
{ } { }
{ } { }
} {}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es seien $a_1 , \ldots , a_{ n }$ reelle Zahlen. Beweise den \stichwort {Polynomialsatz} {,} das ist die Gleichung
\mathdisp {(a_1 + \cdots + a_{ n })^{ k } = \sum_{ r=( r_1 , \ldots , r_{ n }), \, \sum_{i=1}^{ n } r_i =k } \binom{ k }{ r } a_1^{ r_1}a_2^{ r_2} \cdots a_{ n }^{ r_{ n} }} { . }

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{}
{

Bestimme das \definitionsverweis {Taylor-Polynom}{}{} vom Grad $\leq 3$ für die \definitionsverweis {Funktion}{}{} \maabbeledisp {} { \R^3} {\R } {(x,y,z)} {z \cdot \exp (xy) } {,}

im Nullpunkt
\mathl{(0,0,0)}{.}

}
{} {}




\inputaufgabe
{}
{

Bestimme das \definitionsverweis {Taylor-Polynom}{}{} vom Grad $\leq 4$ für die \definitionsverweis {Funktion}{}{} \maabbeledisp {} { \R^2} {\R } {(x,y)} {\cos (x)\cdot \sin (y) } {,}

im Punkt
\mathl{(\pi,\pi/2)}{.}

}
{} {}




\inputaufgabe
{}
{

Es sei $f$ ein \definitionsverweis {Polynom}{}{} in $n$ Variablen vom Grad
\mathl{\leq k}{.} Zeige, dass $f$ mit dem \definitionsverweis {Taylor-Polynom}{}{} vom Grad
\mathl{\leq k}{} von $f$ im Nullpunkt übereinstimmt.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ G }
{ \subseteq }{ \R^n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \definitionsverweis {offen}{}{,}
\mavergleichskette
{\vergleichskette
{ P }
{ \in }{ G }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Punkt und \maabbdisp {f} {G} {\R} {} eine \definitionsverweis {Funktion}{}{.} Sei
\mavergleichskette
{\vergleichskette
{ k }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass es maximal ein Polynom
\mathl{p(x_1 , \ldots , x_n)}{} vom Grad $\leq k$ mit der Eigenschaft geben kann, dass
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{lim}_{ x \rightarrow 0 } \, { \frac{ \Vert {f(x)-p(x)} \Vert }{ \Vert {x} \Vert^k } } }
{ =} {0 }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)