Kurs:Zahlentheorie (Osnabrück 2016-2017)/Arbeitsblatt 19/latex
\setcounter{section}{19}
\zwischenueberschrift{Übungsaufgaben}
\inputaufgabe
{}
{
Konstruiere einen Körper ${\mathbb F}_9$ mit $9$ Elementen.
}
{} {}
\inputaufgabe
{}
{
Bestimme in ${\mathbb F}_{ 9 }$ für jedes Element die multiplikative \definitionsverweis {Ordnung}{}{.} Man gebe insbesondere die \definitionsverweis {primitiven Einheiten}{}{} an.
}
{} {}
\inputaufgabe
{}
{
Es sei $p$ eine
\definitionsverweis {Primzahl}{}{} und $F$ ein
\definitionsverweis {Körper}{}{} mit $p^2$ Elementen. Welche
\definitionsverweis {Ringhomomorphismen}{}{} zwischen
\mathl{\Z/(p^2)}{} und $F$ gibt es? Man betrachte beide Richtungen.
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{}
der positiven
\definitionsverweis {Charakteristik}{}{}
$p$. Sei
\maabb {F} {K} {K
} {}
der
\definitionsverweis {Frobeniushomomorphismus}{}{.}
Zeige, dass genau die Elemente aus
\mathl{\Z/(p)}{} invariant unter $F$ sind.
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein \definitionsverweis {Körper}{}{} der positiven \definitionsverweis {Charakteristik}{}{} $p$. Sei \maabbeledisp {\varphi = F^{e}} {K} {K } {x} { x^{p^{e} } } {} die $e$-te Iteration des \definitionsverweis {Frobeniushomomorphismus}{}{.} Zeige, dass es maximal $p^{e}$ Elemente gibt, die unter $\varphi$ invariant sind, und dass diese Elemente einen Unterkörper von $K$ bilden.
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es sei
\mathl{F \in K[X]}{} und
\mathl{a \in K}{.} Zeige, dass $a$ genau dann eine
\definitionsverweis {mehrfache Nullstelle}{}{}
von $F$ ist, wenn
\mavergleichskette
{\vergleichskette
{F'(a)
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist, wobei $F'$ die
\definitionsverweis {formale Ableitung}{}{}
von $F$ bezeichnet.
}
{} {}
\inputaufgabe
{}
{
Gehe zur Seite \einrueckung{Endliche Körper/Nicht Primkörper/Einige Operationstafeln} und erstelle für einen der dort angegebenen Körper Additions- und Multiplikationstafeln.
}
{} {}
\inputaufgabe
{}
{
Konstruiere
\definitionsverweis {endliche Körper}{}{}
mit
\mathl{4,8,9,16,25,27,32,49,64,81,121,125}{} und
\mathl{132}{} Elementen.
}
{} {}
\inputaufgabe
{}
{
Es sei
\mavergleichskette
{\vergleichskette
{ K
}
{ \subseteq }{ L
}
{ }{
}
{ }{}
{ }{}
}
{}{}{}
eine
\definitionsverweis {Körpererweiterung}{}{} von endlichen Körpern. Zeige, dass dies eine
\definitionsverweis {einfache Körpererweiterung}{}{} ist.
}
{} {}
\inputaufgabegibtloesung
{}
{
a) Zeige, dass durch
\mavergleichskettedisp
{\vergleichskette
{ K
}
{ =} { \Z/(7) [T]/(T^3-2)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
ein Körper mit $343$ Elementen gegeben ist.
b) Berechne in $K$ das Produkt $(T^2+2T+4)(2T^2+5)$.
c) Berechne das (multiplikativ) Inverse zu $T+1$.
}
{} {}
\inputaufgabe
{}
{
a) Bestimme die Primfaktorzerlegung des Polynoms
\mathl{F=X^3+X+2}{} in
\mathl{\Z/(5) [X]}{.}
b) Zeige, dass durch
\mathdisp {K = \Z/(5)[T]/(T^2-2)} { }
ein Körper mit $25$ Elementen gegeben ist.
c) Bestimmen die Primfaktorzerlegung von
\mathl{F=X^3+X+2}{} über
\mathl{K= \Z/(5) [T]/(T^2-2)}{.}
}
{} {}
\inputaufgabegibtloesung
{}
{
Bestimme die \definitionsverweis {Matrix}{}{} des \definitionsverweis {Frobeniushomomorphismus}{}{} \maabbdisp {\Phi} {{\mathbb F}_{49}} {{\mathbb F}_{49} } {} bezüglich einer geeigneten ${\mathbb F}_7$-\definitionsverweis {Basis}{}{} von ${\mathbb F}_{49}$.
}
{} {}
\inputaufgabegibtloesung
{}
{
Es sei $\mathbb F_q$ ein endlicher Körper der Charakteristik ungleich $2$. Zeige unter Verwendung der Isomorphiesätze, dass genau die Hälfte der Elemente aus $\mathbb F_q^{\times}$ ein Quadrat in $\mathbb F_q$ ist.
}
{} {}
\inputaufgabe
{}
{
Formuliere und beweise eine Version des Eulerschen Kriteriums für beliebige \definitionsverweis {endliche Körper}{}{.}
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein
\definitionsverweis {endlicher Körper}{}{}
der Charakteristik
\mavergleichskette
{\vergleichskette
{p
}
{ \neq }{2
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
a) Zeige, dass es in $K$ Elemente gibt, die keine \definitionsverweis {Quadratwurzel}{}{} besitzen.
b) Zeige, dass es eine endliche nichttriviale
\definitionsverweis {Körpererweiterung}{}{}
\mavergleichskettedisp
{\vergleichskette
{K
}
{ \subseteq} {L
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
vom
\definitionsverweis {Grad}{}{}
zwei gibt.
}
{} {}
\inputaufgabe
{}
{
Es sei $p$ eine
\definitionsverweis {Primzahl}{}{}
und
\mathbed {q=p^n} {}
{n \geq 2} {}
{} {} {} {.}
Zeige, dass
\mathl{\Z/(p^n)}{} kein
\definitionsverweis {Vektorraum}{}{}
über
\mathl{\Z/(p)}{} sein kann.
}
{} {}
\inputaufgabe
{}
{
Betrachte die
\definitionsverweis {kommutativen Ringe}{}{}
\mathl{\Z/(13)}{,}
\mathl{\Z/(169)}{} und ${\mathbb F}_{169}$. Bestimme alle
\definitionsverweis {Ringhomomorphismen}{}{} zwischen diesen drei Ringen.Fakt
}
{} {}
\inputaufgabegibtloesung
{}
{
Man gebe eine vollständige Liste aller kommutativer Ringe mit $6$ Elementen.
}
{} {}
\inputaufgabegibtloesung
{}
{
Es sei $R$ ein
\definitionsverweis {Zahlbereich}{}{}
und es sei
\mavergleichskette
{\vergleichskette
{ {\mathfrak p}
}
{ \neq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein
\definitionsverweis {Primideal}{}{.}
Zeige, dass die
\definitionsverweis {Norm}{}{}
von ${\mathfrak p}$ eine echte Primzahlpotenz ist.
}
{} {}
\inputaufgabegibtloesung
{}
{
Es sei $p$ eine Primzahl,
\mathl{q=p^{e}}{} mit
\mathl{e \geq 1}{} und sei ${\mathbb F}_q$ der Körper mit $q$ Elementen und
\mathl{R={\mathbb F}_q[X]}{} der Polynomring darüber. Zeige, dass jeder Restklassenring $R/{\mathfrak a}$ zu einem Ideal
\mathl{{\mathfrak a} \neq 0}{} endlich ist.
}
{} {}
\inputaufgabe
{}
{
Bestimme alle Lösungen der Gleichung
\mavergleichskettedisp
{\vergleichskette
{ x^2+y^2+xy
}
{ =} { 1
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
für die Körper
\mathl{K= \mathbb F_2}{,} $\mathbb F_4$ und $\mathbb F_8$.
}
{} {}
\inputaufgabegibtloesung
{}
{
Es sei $K$ ein
\definitionsverweis {endlicher Körper}{}{}
mit $q$ Elementen.
\aufzaehlungzwei {Zeige, dass die Polynomfunktionen
\maabbeledisp {\varphi_d} {K} {K
} {x} { x^d
} {,}
mit
\mavergleichskette
{\vergleichskette
{0
}
{ \leq }{ d
}
{ < }{q
}
{ }{
}
{ }{
}
}
{}{}{}
\definitionsverweis {linear unabhängig}{}{}
sind.
} {Zeige, dass die Exponentialfunktionen
\maabbeledisp {\psi_b} {K} {K
} {x} { b^x
} {,}
mit
\mavergleichskette
{\vergleichskette
{0
}
{ \leq }{ b
}
{ < }{q
}
{ }{
}
{ }{
}
}
{}{}{}
linear unabhängig sind.
}
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{3}
{
Es sei $R$ ein
\definitionsverweis {Zahlbereich}{}{} und sei
\mathl{f_1, \ldots ,f_n \in R}{} eine $\Z$-Basis von $R$ mit
\definitionsverweis {Diskriminante}{}{}
\mathdisp {\triangle(f_1, \ldots , f_n)} { . }
Es sei
\mathl{h \in R}{.} Zeige, dass
\mathl{hf_1, \ldots ,hf_n}{} eine $\Z$-Basis des Hauptideals $(h)$ bildet und dass gilt:
\mathdisp {\min\{ {{|}}\triangle (b_1, \ldots, b_n){{|}} :\, (b_1, \ldots ,b_n) \, \Z\mbox{-Basis von } (h) \} = N(h)^2 {{|}}\triangle (f_1, \ldots , f_n){{|}}} { . }
}
{} {}
\inputaufgabe
{3}
{
Finde möglichst viele (nicht isomorphe) kommutative Ringe mit vier Elementen. Beweise, dass die Liste vollständig ist.
}
{} {}
\inputaufgabe
{4}
{
Es sei $p$ eine
\definitionsverweis {Primzahl}{}{}
und
\mavergleichskette
{\vergleichskette
{e,d
}
{ \in }{ \N_+
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige:
\mathl{{\mathbb F}_{ p^d }}{} ist genau dann ein Unterkörper von
\mathl{{\mathbb F}_{ p^e }}{}, wenn $e$ ein Vielfaches von $d$ ist.
}
{} {}
\inputaufgabe
{4}
{
Sei $q$ eine echte Primzahlpotenz und ${\mathbb F}_q$ der zugehörige
\definitionsverweis {endliche Körper}{}{.} Zeige, dass in
\mathl{{\mathbb F}_{q^2}}{} jedes Element aus ${\mathbb F}_q$ ein Quadrat ist.
}
{} {}
\inputaufgabe
{7}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{}
und
\mavergleichskette
{\vergleichskette
{ K
}
{ \subseteq }{ L
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
eine
\definitionsverweis {Ringerweiterung}{}{}
vom Grad drei. Klassifiziere die möglichen Typen von $L$, ähnlich wie in
Lemma 19.9.
}
{} {}
<< | Kurs:Zahlentheorie (Osnabrück 2016-2017) | >> |
---|