Lineare Gruppe/C/Kompakte Untergruppe Zariski dicht/Linear reduktiv/Fakt
Erscheinungsbild
Es sei eine affin-algebraische Gruppe über derart, dass es eine kompakte Untergruppe gibt, deren Zariski-Abschluss gleich ist.
Dann ist linear reduktiv.
Es sei eine affin-algebraische Gruppe über derart, dass es eine kompakte Untergruppe gibt, deren Zariski-Abschluss gleich ist.
Dann ist linear reduktiv.