Zum Inhalt springen

Mathematik für Anwender 2/Gemischte Satzabfrage/15/Aufgabe/Lösung

Aus Wikiversity


  1. Es sei ein offenes Intervall und es liege eine inhomogene lineare gewöhnliche Differentialgleichung der Form

    mit stetigen Funktionen und und den Anfangsbedingungen

    vor. Dann lässt sich diese Gleichung lösen, indem man sukzessive unter Verwendung der zuvor gefundenen Lösungen die inhomogenen linearen gewöhnlichen Differentialgleichungen in einer Variablen, nämlich

    löst.
  2. Es sei ein endlichdimensionaler reeller Vektorraum mit einer symmetrischen Bilinearform vom Typ . Dann ist die Gramsche Matrix von bezüglich einer jeden Orthogonalbasis eine Diagonalmatrix mit positiven und negativen Einträgen.
  3. Es sei eine kompakte Teilmenge und es sei vorausgesetzt, dass die Funktion

    stetig ist. Dann ist