Picard-Lindelöf/Iteration/Verfahren/Konvergenz/Bemerkung

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Es sei ein endlichdimensionaler reeller Vektorraum, ein reelles Intervall, eine offene Menge und

ein Vektorfeld auf . Es sei eine Anfangsbedingung. Es sei vorausgesetzt, dass dieses Vektorfeld stetig sei und lokal einer Lipschitz-Bedingung genüge. In der Picard-Lindelöf-Iteration definiert man iterativ eine Folge von Funktionen

durch (dies ist also die konstante Funktion mit dem Wert ) und durch

Dann gibt es ein Teilintervall mit derart, dass für die Folge gegen einen Punkt konvergiert, wobei gleichmäßige Konvergenz vorliegt. Die Grenzfunktion ist dann eine Lösung des Anfangswertproblems

Bei einer linearen Differentialgleichung mit stetigen Koeffizientenfunktionen konvergiert dieses Verfahren auf ganz .