Zum Inhalt springen

R^3/Riemannsche orientierte Fläche/Levi-Civita-Zusammenhang und induzierter Zusammenhang/Fakt/Beweis

Aus Wikiversity
Beweis

Beide Zusammenhänge sind linear, daher genügt es, die Gleichheit der zugehörigen vertikalen Ableitungen lokal für Basisfelder zu zeigen. Sei offen und

eine lokale zweifach stetig differenzierbare Parametrisierung einer offenen Teilmenge . Es seien die beiden konstanten Richtungsfelder auf . Für den Levi-Civita-Zusammenhang ist

wobei die Christoffelsymbole unter Bezug auf

definiert sind. Nach Fakt erfüllen diese Christoffelsymbole auch die Bedingungen

wobei das Einheitsnormalenfeld bezeichnet und die Einträge aus der zweiten Fundamentalmatrix sind (alles aufgefasst auf ).

Die Vektorfelder auf entsprechen auf den Vektorfeldern . Nach Definition der vertikalen Ableitung zu dem eingeschränkten Zusammenhang muss man

betrachten und dies ergibt die orthogonale Projektion von auf das Tangentialbündel an , was mit , aufgefasst über , übereinstimmt (siehe hierzu auch Aufgabe).