Reelle Exponentialfunktion über Exponentialreihe/Einführung/Textabschnitt
Dies ist also die Reihe
Für ist die Aussage richtig. Andernfalls betrachten wir den Quotienten
Dies ist für kleiner als . Aus dem Quotientenkriterium folgt daher die Konvergenz.
Aufgrund dieser Eigenschaft können wir die reelle Exponentialfunktion definieren.
Die folgende Aussage heißt die Funktionalgleichung der Exponentialfunktion.
Für reelle Zahlen gilt
Das Cauchy-Produkt der beiden Exponentialreihen ist
mit
Diese Reihe ist nach Fakt absolut konvergent und der Grenzwert ist das Produkt der beiden Grenzwerte. Andererseits ist der -te Summand der Exponentialreihe von nach Fakt gleich
sodass die beiden Seiten übereinstimmen.
- Es ist .
- Für jedes ist . Insbesondere ist .
- Für ganze Zahlen ist .
- Für jedes ist .
- Für ist und für ist .
- Die reelle Exponentialfunktion ist streng wachsend.
(1) folgt direkt aus der Definition.
(2) folgt aus
aufgrund von
Fakt.
(3) folgt für
aus
Fakt
durch Induktion, und daraus wegen (2) auch für negatives .
(4). Die Nichtnegativität ergibt sich aus
(5). Für reelles ist , sodass nach (4) ein Faktor sein muss und der andere Faktor . Für ist
da ja hinten nur positive Zahlen hinzuaddiert werden.
(6). Für reelle
ist
und daher nach (5)
,
also