Im Anschauungsraum kann man nicht nur Vektoren addieren und skalieren, sondern ein Vektor hat auch eine Länge, und die Lagebeziehung von zwei Vektoren zueinander wird durch den Winkel zwischen ihnen ausgedrückt. Länge und Winkel werden beide durch den Begriff des Skalarprodukts präzisiert. Dafür muss ein reeller Vektorraum oder ein komplexer Vektorräume vorliegen.
Zu einem euklidischen Vektorraum ist jeder
Untervektorraum
selbst wieder ein euklidischer Vektorraum, da man das Skalarprodukt auf einschränken kann und dabei die definierenden Eigenschaften erhalten bleiben.
Im komplexen Fall sieht die Definition etwas anders aus. Es liegt keine Bilinearität und keine Symmetrie im strengen Sinne vor, sondern nur bis auf komplexe Konjugation. Diese Variante ist nötig, um die positive Definitheit zu sichern, auf der der Abstandsbegriff beruht.
Wir werden die beiden Fälle parallel behandeln. Wenn man zu einem komplexen Vektorraum mit einem Skalarprodukt den zugrunde liegenden reellen Vektorraum betrachten, so ist der Realteil des komplexen Skalarprodukts ein reelles Skalarprodukt, siehe
Aufgabe.
Daher kann man sich bei Abstandsfragen auf den reellen Fall konzentrieren.