Zum Inhalt springen

Restklasssenring/Z/Charakteristik/Textabschnitt

Aus Wikiversity

Die Charakteristik von ist . Dies zeigt insbesondere, dass es zu jeder Zahl Ringe gibt mit dieser Charakteristik. Zu einem beliebigen Ring der Charakteristik faktorisiert der charakteristische Ringhomomorphismus nach Fakt durch Ringhomomorphismen

wobei die hintere Abbildung injektiv ist. Der Ring , , ist der kleinste Unterring von , und wird der Primring von genannt.



Seien und positive natürliche Zahlen, und teile .

Dann gibt es einen kanonischen Ringhomomorphismus

Wir betrachten die Ringhomomorphismen

Aufgrund der Teilerbeziehung haben wir die Beziehung

Aufgrund des Homomorphiesatzes hat man daher einen kanonischen Ringhomomorphismus von links unten nach rechts oben.