Affiner Raum/Affine Unabhängigkeit/Einführung/Textabschnitt
Erscheinungsbild
Es sei ein affiner Raum über einem -Vektorraum und es sei
eine endliche Familie von Punkten aus . Man nennt die Punktfamilie affin-unabhängig, wenn eine Gleichheit
mit
nur bei
für alle möglich ist.
Es sei ein affiner Raum über einem -Vektorraum und es sei
eine endliche Familie von Punkten aus . Dann sind die folgenden Aussagen äquivalent.
- Die Punkte sind affin unabhängig.
- Für jedes
ist die Vektorfamilie
- Es gibt ein
derart, dass die Vektorfamilie
linear unabhängig ist.
- Die Punkte bilden in dem von ihnen erzeugten affinen Unterraum eine affine Basis.
Beweis
Siehe
Aufgabe.