Gruppentheorie/Homomorphiesatz/Textabschnitt
Es seien und Gruppen, es sei ein Gruppenhomomorphismus und ein surjektiver Gruppenhomomorphismus. Es sei vorausgesetzt, dass
ist.
Dann gibt es einen eindeutig bestimmten Gruppenhomomorphismus
derart, dass ist.
Mit anderen Worten: das Diagramm
ist kommutativ.
Wir zeigen zuerst die Eindeutigkeit. Für jedes Element gibt es mindestens ein mit . Wegen der Kommutativität des Diagramms muss
gelten. Das bedeutet, dass es maximal ein geben kann.
Wir haben zu zeigen, dass durch diese Bedingung eine wohldefinierte Abbildung gegeben ist. Es seien also
zwei Urbilder von . Dann ist
und somit ist . Daher ist . Die Abbildung ist also wohldefiniert. Seien und seien Urbilder davon. Dann ist ein Urbild von und daher ist
D.h. ist ein Gruppenhomomorphismus.
Die im vorstehenden Satz konstruierte Abbildung heißt induzierte Abbildung oder induzierter Homomorphismus und entsprechend heißt der Satz auch Satz vom induzierten Homomorphismus.
Es seien und Gruppen und sei
ein surjektiver Gruppenhomomorphismus.
Dann gibt es eine kanonische Isomorphie
Wir wenden Fakt auf und die kanonische Projektion an. Dies induziert einen Gruppenhomomorphismus
mit , der surjektiv ist. Sei und . Dann ist
also . Damit ist , d.h. der Kern von ist trivial und nach Fakt ist auch injektiv.
Es seien und Gruppen und sei
Dann gibt es eine kanonische Faktorisierung
wobei die kanonische Projektion, ein Gruppenisomorphismus und die kanonische Inklusion der Bildgruppe ist.
Dies folgt aus Fakt, angewandt auf die Bildgruppe .
Diese Aussage wird häufig kurz und prägnant so formuliert:
- Bild Urbild modulo Kern.