Gruppentheorie/Homomorphiesatz/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Satz  

Seien und Gruppen, es sei ein Gruppenhomomorphismus und ein surjektiver Gruppenhomomorphismus. Es sei vorausgesetzt, dass

ist.

Dann gibt es einen eindeutig bestimmten Gruppenhomomorphismus

derart, dass ist.

Mit anderen Worten: das Diagramm

ist kommutativ.

Beweis  

Wir zeigen zuerst die Eindeutigkeit. Für jedes Element gibt es mindestens ein mit . Wegen der Kommutativität des Diagramms muss

gelten. Das bedeutet, dass es maximal ein geben kann.
Wir haben zu zeigen, dass durch diese Bedingung eine wohldefinierte Abbildung gegeben ist. Seien also zwei Urbilder von . Dann ist

und somit ist . Daher ist . Die Abbildung ist also wohldefiniert. Seien und seien Urbilder davon. Dann ist ein Urbild von und daher ist

D.h. ist ein Gruppenhomomorphismus.


Die im vorstehenden Satz konstruierte Abbildung heißt induzierte Abbildung oder induzierter Homomorphismus und entsprechend heißt der Satz auch Satz vom induzierten Homomorphismus.



Korollar  

Seien und Gruppen und sei

ein surjektiver Gruppenhomomorphismus.

Dann gibt es eine kanonische Isomorphie

Beweis  

Wir wenden Fakt auf und die kanonische Projektion an. Dies induziert einen Gruppenhomomorphismus

mit , der surjektiv ist. Sei und . Dann ist

also . Damit ist , d.h. der Kern von ist trivial und nach Fakt ist auch injektiv.




Satz  

Seien und Gruppen und sei

ein Gruppenhomomorphismus.

Dann gibt es eine kanonische Faktorisierung

wobei die kanonische Projektion, ein Gruppenisomorphismus und die kanonische Inklusion der Bildgruppe ist.

Beweis  

Dies folgt aus Fakt, angewandt auf die Bildgruppe .


Diese Aussage wird häufig kurz und prägnant so formuliert:

Bild Urbild modulo Kern.