Komplexe und reelle Partialbruchzerlegung/Textabschnitt
Die Partialbruchzerlegung liefert eine wichtige Darstellungsform für eine rationale Funktion , bei der die Nenner besonders einfach werden. Wir beginnen mit dem Fall , wo wir den Fundamentalsatz der Algebra zur Verfügung haben.
Es seien , , Polynome und es sei
mit verschiedenen .
Dann gibt es ein eindeutig bestimmtes Polynom und eindeutig bestimmte Koeffizienten , , , mit
Die Division mit Rest liefert eine eindeutige Darstellung
mit . Wir müssen daher die Aussage nur für Quotienten aus Polynomen zeigen, bei denen der Grad des Zählerpolynoms kleiner als der Grad des Nennerpolynoms ist. Wir führen Induktion über den Grad des Nennerpolynoms. Bei ist nichts zu zeigen, denn der Quotient steht bereits in der gewünschten Form. Es sei nun ein Nennerpolynom vom Grad und die Aussage sei für kleineren Grad bereits bewiesen. Es sei ein Linearfaktor von , sodass wir
schreiben können, wobei den Grad besitzt. Die Ordnung von in sei . Wir setzen
an. Dies führt auf
aus der wir und bestimmen wollen. Da die Gleichheit insbesondere für gelten soll, muss
sein, wobei diese Division erlaubt ist, da die als verschieden vorausgesetzt worden sind. Wir betrachten nun
mit dem soeben bestimmten Wert . Für diese Differenz ist dann nach Konstruktion eine Nullstelle, sodass man nach Fakt durch teilen kann, also
erhält. Dadurch ist eindeutig festgelegt. Der Grad von ist kleiner als der Grad von und daher ist der Grad von auch kleiner als der Grad von . Daher können wir auf die Induktionsvoraussetzung anwenden.
Wir wenden uns nun der reellen Situation zu.
Es seien , , Polynome und es sei
mit verschiedenen und verschiedenen quadratischen Polynomen ohne reelle Nullstellen.
Dann gibt es ein eindeutig bestimmtes Polynom und eindeutig bestimmte Koeffizienten , , , und eindeutig bestimmte lineare Polynome , , , mit
Wir gehen von der komplexen Partialbruchzerlegung von aus. Die reell quadratischen Polynome zerfallen komplex als
mit . In der komplexen Partialbruchzerlegung betrachten wir die Teilsumme
mit . Wenn man auf die gesamte komplexe Partialbruchzerlegung die komplexe Konjugation anwendet, so bleibt der reelle Quotient unverändert, sodass auch die Partialbruchzerlegung in sich überführt wird. Daher müssen und zueinander konjugiert sein und die obige Teilsumme ist daher
wobei das Zählerpolynom reell ist, da es invariant unter der komplexen Konjugation ist. Dieses Zählerpolynom ist im Allgemeinen nicht linear, wir werden aber zeigen, dass man weiter auf lineare Zählerpolynome reduzieren kann. Der Grad von ist kleiner als der Grad des Nennerpolynoms. Durch sukzessive Division mit Rest von durch erhält man
mit linearen (reellen) Polynomen . Daher ist
Wenn man alles aufsummiert, so erhält man insgesamt die Existenz der reellen Partialbruchzerlegung. Für die Eindeutigkeit siehe
Aufgabe.
Neben dem Umweg über die komplexe Partialbruchzerlegung gibt es weitere Methoden, in Beispielen die reelle Partialbruchzerlegung zu bestimmen. Grundsätzlich bedeutet das Bestimmen der
(reellen oder komplexen)
Koeffizienten in der Partialbruchzerlegung, ein
(inhomogenes) lineares Gleichungssystem zu lösen, wobei man sowohl durch Koeffizientenvergleich als auch durch das Einsetzen von bestimmten Zahlen zu hinreichend vielen linearen Gleichungen kommt.
Wir betrachten die rationale Funktion
wobei der Faktor rechts reell nicht weiter zerlegbar ist. Daher muss es eine eindeutige Darstellung
geben. Multiplikation mit dem Nennerpolynom führt auf
Koeffizientenvergleich führt auf das inhomogene lineare Gleichungssystem
mit den eindeutigen Lösungen
Die Partialbruchzerlegung ist also
Wir betrachten die rationale Funktion
wo die Faktorzerlegung des Nennerpolynoms sofort ersichtlich ist. Der Ansatz
führt durch Multiplikation mit dem Nennerpolynom auf
Koeffizientenvergleich führt auf das inhomogene lineare Gleichungssystem
mit der Lösung
Insgesamt ist die Partialbruchzerlegung also gleich