Komplexe und reelle Partialbruchzerlegung/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Die Partialbruchzerlegung liefert eine wichtige Darstellungsform für eine rationale Funktion , bei der die Nenner besonders einfach werden. Wir beginnen mit dem Fall , wo wir den Fundamentalsatz der Algebra zur Verfügung haben.


Satz  

Es seien , , Polynome und es sei

mit verschiedenen .

Dann gibt es ein eindeutig bestimmtes Polynom und eindeutig bestimmte Koeffizienten , , , mit

Beweis  

Die Division mit Rest liefert eine eindeutige Darstellung

mit . Wir müssen daher die Aussage nur für Quotienten aus Polynomen zeigen, wo der Grad des Zählerpolynoms kleiner als der Grad des Nennerpolynoms ist. Wir führen Induktion über den Grad des Nennerpolynoms. Bei ist nichts zu zeigen, denn der Quotient steht bereits in der gewünschten Form. Es sei nun ein Nennerpolynom vom Grad und die Aussage sei für kleineren Grad bereits bewiesen. Es sei ein Linearfaktor von , so dass wir

schreiben können, wobei den Grad besitzt. Die Ordnung von in sei . Wir setzen

an. Dies führt auf

aus der wir und bestimmen wollen. Da die Gleichheit insbesondere für gelten soll, muss

sein, wobei diese Division erlaubt ist, da die als verschieden vorausgesetzt wurden. Wir betrachten nun

mit dem soeben bestimmten Wert . Für diese Differenz ist dann nach Konstruktion eine Nullstelle, so dass man nach Fakt durch teilen kann, also

erhält. Dadurch ist eindeutig festgelegt. Der Grad von ist kleiner als der Grad von und der Grad von ist kleiner als der Grad von . Daher können wir auf die Induktionsvoraussetzung anwenden.


Wir wenden uns nun der reellen Situation zu.


Satz  

Es seien , , Polynome und es sei

mit verschiedenen und verschiedenen quadratischen Polynomen ohne reelle Nullstellen.

Dann gibt es ein eindeutig bestimmtes Polynom und eindeutig bestimmte Koeffizienten , , , und eindeutig bestimmte lineare Polynome , , , mit

Beweis  

Wir gehen von der komplexen Partialbruchzerlegung von aus. Die reell quadratischen Polynome zerfallen komplex als

mit . In der komplexen Partialbruchzerlegung betrachten wir die Teilsumme

mit . Wenn man auf die gesamte komplexe Partialbruchzerlegung die komplexe Konjugation anwendet, so bleibt der reelle Quotient unverändert, so dass auch die Partialbruchzerlegung in sich überführt wird. Daher müssen und zueinander konjugiert sein und die obige Teilsumme ist daher

wobei das Zählerpolynom reell ist, da es invariant unter der komplexen Konjugation ist. Dieses Zählerpolynom ist im Allgemeinen nicht linear, wir werden aber zeigen, dass man weiter auf lineare Zählerpolynome reduzieren kann. Der Grad von ist kleiner als der Grad des Nennerpolynoms. Durch sukzessive Division mit Rest von durch erhält man

mit linearen (reellen) Polynomen . Daher ist

Wenn man alles aufsummiert, so erhält man insgesamt die Existenz der reellen Partialbruchzerlegung. Für die Eindeutigkeit siehe Aufgabe.


Neben dem Umweg über die komplexe Partialbruchzerlegung gibt es weitere Methoden, in Beispielen die reelle Partialbruchzerlegung zu bestimmen. Grundsätzlich bedeutet das Bestimmen der (reellen oder komplexen) Koeffizienten in der Partialbruchzerlegung, ein (inhomogenes) lineares Gleichungssystem zu lösen, wobei man sowohl durch Koeffizientenvergleich als auch durch das Einsetzen von bestimmten Zahlen zu hinreichend vielen linearen Gleichungen kommt.


Beispiel  

Wir betrachten die rationale Funktion

wobei der Faktor rechts reell nicht weiter zerlegbar ist. Daher muss es eine eindeutige Darstellung

geben. Multiplikation mit dem Nennerpolynom führt auf

Koeffizientenvergleich führt auf das inhomogene lineare Gleichungssystem

mit den eindeutigen Lösungen

Die Partialbruchzerlegung ist also



Beispiel  

Wir betrachten die rationale Funktion

wo die Faktorzerlegung des Nennerpolynoms sofort ersichtlich ist. Der Ansatz

führt durch Multiplikation mit dem Nennerpolynom auf

Koeffizientenvergleich führt auf das inhomogene lineare Gleichungssystem

mit der Lösung

Insgesamt ist die Partialbruchzerlegung also gleich