Kurs:Diskrete Mathematik/24/Klausur mit Lösungen/kontrolle
Erscheinungsbild
Aufgabe | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Punkte | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |
Aufgabe (3 Punkte)
- Eine
Verknüpfung
heißt assoziativ, wenn für alle die Gleichheit
gilt.
- Die
Relation
heißt Ordnungsrelation, wenn folgende drei Bedingungen erfüllt sind.
- Es ist für alle .
- Aus und folgt stets .
- Aus und folgt .
- Die Äquivalenzklasse zu ist die Menge
- Ungerichteter Graph/Automorphismus/Definition/Begriff/Inhalt
- Graph/Adjazenzmatrix/Charakteristisches Polynom/Definition/Begriff/Inhalt
- Graph/Hamiltonkreis/Definition/Begriff/Inhalt
Aufgabe (3 Punkte)
Aufgabe (0 Punkte)
Aufgabe (0 Punkte)
Aufgabe (0 Punkte)
Aufgabe (0 Punkte)
Aufgabe (0 Punkte)
Aufgabe (0 Punkte)
Aufgabe (2 (1+1) Punkte)
Es seien natürliche Zahlen mit .
- Bestimme .
- Bestimme .
Es sei
Dann ist
und somit ist ein Teiler von . In einem solchen Fall ist der Teiler der größte gemeinsame Teiler und das Vielfache das kleinste gemeinsame Vielfache. Also ist
und
Aufgabe (3 Punkte)
Führe in die Division mit Rest „ durch “ für die beiden Polynome und durch.
Es ist
Aufgabe (0 Punkte)
Aufgabe (0 Punkte)
Aufgabe (0 Punkte)
Aufgabe (0 Punkte)
Aufgabe (0 Punkte)
Aufgabe (0 Punkte)
Aufgabe (0 Punkte)
Aufgabe (0 Punkte)
Aufgabe (0 Punkte)