Kurs:Invariantentheorie (Osnabrück 2012-2013)/Arbeitsblatt 13/latex
\setcounter{section}{13}
\zwischenueberschrift{Aufwärmaufgaben}
\inputaufgabegibtloesung
{}
{
Es sei $R$ ein \definitionsverweis {kommutativer Ring}{}{} und ${\mathfrak p}$ ein \definitionsverweis {Ideal}{}{.} Zeige, dass ${\mathfrak p}$ genau dann ein \definitionsverweis {Primideal}{}{} ist, wenn der \definitionsverweis {Restklassenring}{}{} $R/{\mathfrak p}$ ein \definitionsverweis {Integritätsbereich}{}{} ist.
}
{} {}
\inputaufgabe
{}
{
Es sei ${\mathfrak a}$ ein \definitionsverweis {Ideal}{}{} in einem \definitionsverweis {kommutativen Ring}{}{} $R$. Zeige, dass ${\mathfrak a}$ genau dann ein \definitionsverweis {Primideal}{}{} ist, wenn ${\mathfrak a}$ der \definitionsverweis {Kern}{}{} eines \definitionsverweis {Ringhomomorphismus}{}{} \maabb {\varphi} {R} {K } {} in einen \definitionsverweis {Körper}{}{} $K$ ist.
}
{} {}
\inputaufgabe
{}
{
}
{} {}
\inputaufgabe
{}
{
Es sei $R$ ein
\definitionsverweis {kommutativer Ring}{}{}
und
\mavergleichskette
{\vergleichskette
{ I
}
{ \subseteq }{ R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein
\definitionsverweis {Ideal}{}{}
in $R$. Zeige, dass $I$ genau dann ein
\definitionsverweis {maximales Ideal}{}{}
ist, wenn der
\definitionsverweis {Restklassenring}{}{}
$R/I$ ein
\definitionsverweis {Körper}{}{}
ist.
}
{} {}
\inputaufgabe
{}
{
Es sei $R$ ein
\definitionsverweis {kommutativer Ring}{}{}
und sei
\mavergleichskette
{\vergleichskette
{ {\mathfrak a}
}
{ \neq }{ R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein
\definitionsverweis {Ideal}{}{}
in $R$. Zeige: ${\mathfrak a}$ ist genau dann ein
\definitionsverweis {maximales Ideal}{}{,}
wenn es zu jedem
\mathbed {g \in R} {}
{g \not\in \mathfrak a} {}
{} {} {} {,}
ein
\mavergleichskette
{\vergleichskette
{ f
}
{ \in }{ {\mathfrak a}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und ein
\mavergleichskette
{\vergleichskette
{ r
}
{ \in }{ R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
mit
\mavergleichskette
{\vergleichskette
{ rg+f
}
{ = }{ 1
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
gibt.
}
{} {}
\inputaufgabe
{}
{
Es sei $R$ ein vom Nullring verschiedener \definitionsverweis {kommutativer Ring}{}{.} Zeige unter Verwendung des \definitionsverweis {Lemmas von Zorn}{}{,} dass es \definitionsverweis {maximale Ideale}{}{} in $R$ gibt.
}
{} {}
\inputaufgabe
{}
{
Es sei $R$ ein
\definitionsverweis {kommutativer Ring}{}{,}
\mathl{{\mathfrak a} \subseteq R}{} ein
\definitionsverweis {Ideal}{}{}
und
\mathl{M \subseteq R}{} ein
\definitionsverweis {multiplikatives System}{}{}
mit
\mavergleichskette
{\vergleichskette
{ {\mathfrak a} \cap M
}
{ = }{ \emptyset
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige mit dem
Lemma von Zorn,
dass es dann auch ein
\definitionsverweis {Primideal}{}{}
${\mathfrak p}$ mit
\mavergleichskette
{\vergleichskette
{ {\mathfrak a}
}
{ \subseteq }{ {\mathfrak p}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und mit
\mavergleichskette
{\vergleichskette
{ {\mathfrak p} \cap M
}
{ = }{ \emptyset
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
gibt.
}
{} {}
\inputaufgabegibtloesung
{}
{
Es sei $\mathfrak a$ ein \definitionsverweis {Radikal}{}{} in einem kommutativen Ring. Zeige, dass $\mathfrak a$ der Durchschnitt von \definitionsverweis {Primidealen}{}{} ist.
}
{} {}
Vor den nächsten Aufgaben erinnern wir an den Begriff eines \stichwort {lokalen Ringes} {} und einer Lokalisierung.
Ein \definitionsverweis {kommutativer Ring}{}{} $R$ heißt \definitionswort {lokal}{}, wenn $R$ genau ein \definitionsverweis {maximales Ideal}{}{} besitzt.
Es sei $R$ ein
\definitionsverweis {kommutativer Ring}{}{}
und sei ${\mathfrak p}$ ein
\definitionsverweis {Primideal}{}{.}
Dann nennt man die
\definitionsverweis {Nenneraufnahme}{}{}
an
\mavergleichskette
{\vergleichskette
{S
}
{ = }{ R \setminus {\mathfrak p}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
die \definitionswort {Lokalisierung}{} von $R$ an ${\mathfrak p}$. Man schreibt dafür $R_{\mathfrak p}$. Es ist also
\mavergleichskettedisp
{\vergleichskette
{ R_{\mathfrak p}
}
{ \defeq} { { \left\{ \frac{f}{g} \mid f \in R , \, g \not\in {\mathfrak p} \right\} }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
\inputaufgabe
{}
{
Es sei $R$ ein
\definitionsverweis {kommutativer Ring}{}{.}
Zeige, dass $R$ genau dann ein
\definitionsverweis {lokaler Ring}{}{}
ist, wenn
\mathl{a+b}{} nur dann eine
\definitionsverweis {Einheit}{}{}
ist, wenn $a$ oder $b$ eine Einheit ist.
}
{} {}
\inputaufgabe
{}
{
Es sei $R$ ein kommutativer Ring und sei ${\mathfrak m}$ ein \definitionsverweis {maximales Ideal}{}{} mit \definitionsverweis {Lokalisierung}{}{} $R_{\mathfrak m}$. Es sei ${\mathfrak a}$ ein Ideal, dass unter der Lokalisierungsabbildung zum Kern gehört. Zeige, dass dann $R_{\mathfrak m}$ auch eine Lokalisierung von $R/{\mathfrak a}$ ist.
}
{} {}
\inputaufgabe
{}
{
Beschreibe das \definitionsverweis {Spektrum}{}{} eines \definitionsverweis {diskreten Bewertungsringes}{}{.}
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{.}
Beschreibe das
\definitionsverweis {Spektrum}{}{}
von
\mathdisp {K[X,Y]/(XY)} { . }
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{}
{
Es sei $R$ ein
\definitionsverweis {kommutativer Ring}{}{,}
sei
\mavergleichskette
{\vergleichskette
{f
}
{ \in }{R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und sei ${\mathfrak a}$ ein
\definitionsverweis {Ideal}{}{.}
Zeige, dass
\mavergleichskette
{\vergleichskette
{f
}
{ \in }{{\mathfrak a}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
genau dann gilt, wenn für alle
\definitionsverweis {Lokalisierungen}{}{}
$R_{\mathfrak p}$ gilt, dass
\mavergleichskette
{\vergleichskette
{f
}
{ \in }{ {\mathfrak a} R_{\mathfrak p}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist.
}
{} {}
\inputaufgabegibtloesung
{4}
{
Es sei $R$ ein
\definitionsverweis {kommutativer Ring}{}{}
und sei ${\mathfrak p}$ ein
\definitionsverweis {Primideal}{}{.}
Dann ist der
\definitionsverweis {Restklassenring}{}{}
\mavergleichskette
{\vergleichskette
{S
}
{ = }{ R/{\mathfrak p}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein
\definitionsverweis {Integritätsbereich}{}{}
mit
\definitionsverweis {Quotientenkörper}{}{}
\mavergleichskette
{\vergleichskette
{Q
}
{ = }{Q(S)
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und $R_{\mathfrak p}$ ist ein
\definitionsverweis {lokaler Ring}{}{}
mit dem
\definitionsverweis {maximalen Ideal}{}{}
\mathl{{\mathfrak p}R_{\mathfrak p}}{.} Zeige, dass eine natürliche Isomorphie
\mavergleichskettedisp
{\vergleichskette
{ Q(S)
}
{ \cong} { R_{\mathfrak p}/ {\mathfrak p} R_{\mathfrak p}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
vorliegt.
}
{} {}
Den in der vorstehenden Aufgabe auf zweifache Weise konstruierten Körper nennt man auch den \stichwort {Restekörper} {} in ${\mathfrak p}$. Er wird mit
\mathl{\kappa { \left( {\mathfrak p} \right) }}{} bezeichnet.
<< | Kurs:Invariantentheorie (Osnabrück 2012-2013) | >> |
---|