Kurs:Invariantentheorie (Osnabrück 2012-2013)/Moduln/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Anhang 1 - Moduln

Definition  

Sei ein kommutativer Ring und eine additiv geschriebene kommutative Gruppe. Man nennt einen -Modul, wenn eine Operation

(Skalarmultiplikation genannt) festgelegt ist, die folgende Axiome erfüllt (dabei seien und beliebig):

  1. ,
  2. ,
  3. ,
  4. .

Definition  

Sei ein kommutativer Ring und ein -Modul. Eine Teilmenge heißt -Untermodul, wenn sie eine Untergruppe von ist und wenn für jedes und auch ist.


Definition  

Sei ein kommutativer Ring und ein -Modul. Eine Familie , , heißt Erzeugendensystem für , wenn es für jedes Element eine Darstellung

gibt, wobei endlich ist und .


Definition  

Sei ein kommutativer Ring und ein -Modul. Der Modul heißt endlich erzeugt oder endlich, wenn es ein endliches Erzeugendensystem , , für ihn gibt (also mit einer endlichen Indexmenge).

Ein kommutativer Ring selbst ist in natürlicher Weise ein -Modul, wenn man die Ringmultiplikation als Skalarmultiplikation interpretiert. Die Ideale sind dann genau die -Untermoduln von . Die Begriffe Ideal-Erzeugendensystem und Modul-Erzeugendensystem stimmen für Ideale überein.

Im Lemma von Nakayama wird folgende Konstruktion betrachtet: Zu einem -Modul , einem Untermodul und einem Ideal bezeichnet man mit den -Untermodul von , der von allen Elementen der Form , erzeugt wird (dies ist auch ein -Untermodul von ). Ist ebenfalls ein Ideal (also ein -Untermodul von ) so fällt dieses Konzept mit dem Produkt von Idealen zusammen. Der Restklassenmodul ist dabei in natürlicher Weise nicht nur ein -Modul, sondern auch ein -Modul. Wenn ein maximales Ideal ist, so bedeutet dies, dass der Restklassenmodul sogar ein Vektorraum über dem Restklassenkörper ist.



Lemma  

Sei ein lokaler Ring und sei ein endlich erzeugter -Modul. Es sei vorausgesetzt.

Dann ist .

Beweis  

Sei ein Erzeugendensystem von . Nach Voraussetzung gibt es wegen zu jedem eine Darstellung

mit . Daraus ergibt sich für jedes eine Darstellung

Da ist, ist der Koeffizient eine Einheit. Dies bedeutet aber, dass man nach auflösen kann, so dass also überflüssig ist. So kann man sukzessive auf alle Erzeuger verzichten, was bedeutet, dass der Nullmodul vorliegen muss.