Zum Inhalt springen

Lineare Abbildung/Matrix zu Basen/Verschiedene Eigenschaften/Fakt/Beweis

Aus Wikiversity
Beweis

Es seien und Basen von bzw. und es seien die Spaltenvektoren von . (1). Die Abbildung hat die Eigenschaft

wobei der -te Eintrag des -ten Spaltenvektors ist. Daher ist

Dies ist genau dann , wenn für alle ist, und dies ist äquivalent zu

Dafür gibt es ein nichttriviales (Lösungs-)Tupel genau dann, wenn die Spalten linear abhängig sind und genau dann, wenn der Kern von nicht trivial ist. Dies ist gemäß Fakt äquivalent dazu, dass nicht injektiv ist.
(2). Siehe Aufgabe.
(3). Sei . Die erste Äquivalenz folgt aus (1) und (2). Wenn bijektiv ist, so gibt es die (lineare) Umkehrabbildung mit

Es sei die Matrix zu und die Matrix zu . Die Matrix zur Identität ist die Einheitsmatrix. Nach Fakt ist daher

und somit ist invertierbar. Die Umkehrung wird ähnlich bewiesen.