Zum Inhalt springen

Lineare Abbildung/Moduln/Bild und Urbild/Untermoduln/Fakt

Aus Wikiversity

Es sei ein kommutativer Ring, und zwei -Moduln und sei

ein Modulhomomorphismus. Dann gelten folgende Aussagen.

  1. Für einen -Untermodul ist auch das Bild ein Untermodul von .
  2. Insbesondere ist das Bild der Abbildung ein Untermodul von .
  3. Für einen Untermodul ist das Urbild ein Untermodul von .
  4. Insbesondere ist der Kern ein Untermodul von .