Zum Inhalt springen

Mathematik für Anwender 2/Gemischte Satzabfrage/12/Aufgabe/Lösung

Aus Wikiversity


  1. Es sei ein euklidischer Vektorraum und

    eine stetige Abbildung. Dann gilt

  2. Es sei ein Körper, ein endlichdimensionaler -Vektorraum und eine Bilinearform auf . Es seien und zwei Basen von und es seien bzw. die Gramschen Matrizen von bezüglich dieser Basen. Zwischen den Basiselementen gelte die Beziehungen

    die wir durch die Übergangsmatrix

    ausdrücken. Dan
  3. Es sei eine offene zusammenhängende Teilmenge und

    ein stetig differenzierbares Vektorfeld. Dann sind die folgenden Eigenschaften äquivalent.

    1. ist ein Gradientenfeld.
    2. Für jeden stetig differenzierbaren Weg hängt das Wegintegral nur vom Anfangspunkt und Endpunkt ab.