Beweis
(1). Die Multiplikation
-
ist
-bilinear
und führt nach
Fakt
zu einer
-linearen Abbildung
-
Dies induziert nach
Fakt (2)
und nach
Fakt
einen
-Modulhomomorphismus
-
Dies ergibt eine wohldefinierte Skalarmultiplikation
-
die explizit durch
-
gegeben ist. Aus dieser Beschreibung folgen direkt die Eigenschaften einer Skalarmultiplikation.
(2). Die -Homomorphie folgt direkt aus der Bilinearität des Tensorprodukts. Bei
ist die Abbildung surjektiv. Die Skalarmultiplikation
induziert eine
-lineare Abbildung
-
Die Verknüpfung der kanonischen Abbildung
mit dieser Abbildung ist die Identität auf , sodass die erste Abbildung auch injektiv ist.
(3) folgt aus der expliziten Beschreibung in (1).
(4) folgt aus
Fakt (3).
(5). Nach Teil (2) haben wir einerseits eine -lineare Abbildung
.
Dies führt zu einer -multilinearen Abbildung
-
die eine
-lineare Abbildung
-
induziert. Andererseits haben wir eine -lineare Abbildung
-
Rechts steht ein -Modul, daher kann man die Skalarmultiplikation als eine -multilineare Abbildung
-
auffassen, die ihrerseits zu einer -linearen Abbildung
-
führt. Diese beiden Abbildungen sind invers zueinander, was man auf den zerlegbaren Tensoren überprüfen kann. Daran sieht man auch, dass sich die -Multiplikationen entsprechen.