Teilmenge/R^n/Sternförmig/Gradientenfeld/Charakterisierung/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Die Äquivalenz folgt aus Fakt und die Implikation aus Fakt. Es bleibt also zu zeigen, wobei wir explizit eine Stammfunktion zum Vektorfeld angeben. Es sei ein Punkt derart, dass bezüglich sternförmig ist. Wir definieren über das Wegintegral zu zum linearen Verbindungsweg

also

Wir müssen zeigen, dass der Gradient zu gleich ist, d.h. es ist zu zeigen. Dafür können wir annehmen und wir schreiben statt . Mit diesen Bezeichnungen und Voraussetzungen ist

Dabei beruht die zweite Gleichung auf der Vertauschbarkeit von Integration und Differentiation (angewendet auf die stetig differenzierbare Funktion , ) die vierte Gleichung auf Aufgabe, die fünfte Gleichung auf der Integrabilitätsbedingung, die sechste Gleichung auf der Kettenregel und der Produktregel und die siebte Gleichung auf der Newton-Leibniz-Formel.

Zur bewiesenen Aussage