Äquivalenzrelation/Beispiele/2/Einführung/Textabschnitt
Eine Äquivalenzrelation auf einer Menge ist eine Relation , die die folgenden drei Eigenschaften besitzt (für beliebige ).
- Es ist (reflexiv).
- Aus folgt (symmetrisch).
- Aus und folgt (transitiv).
Dabei bedeutet , dass das Paar zu gehört.
Das Urbeispiel für eine Äquivalenzrelation ist die Gleichheit auf einer beliebigen Menge . Unter der Gleichheit ist jedes Element nur mit sich selbst äquivalent.
Auf jeder Menge gibt es die Äquivalenzrelation, unter der alle Elemente zueinander in Relation stehen.
Häufig interessiert man sich gar nicht so genau für einzelne Objekte, sondern nur für bestimmte Eigenschaften davon. Objekte, die sich bezüglich einer bestimmten, genau definierten Eigenschaft gleich verhalten, kann man dann (bezüglich dieser Eigenschaft) als äquivalent betrachten. Offenbar handelt es sich dabei um eine Äquivalenzrelation. Wenn man sich beispielsweise nur für die Farbe von Objekten interessiert, so sind alle Objekte, die (exakt) gleichfarbig sind, zueinander äquivalent. Wenn man sich bei Tieren nicht für irgendwelche individuellen Eigenschaften interessiert, sondern nur für ihre Art, so sind gleichartige Tiere äquivalent, d.h. zwei Tiere sind genau dann äquivalent, wenn sie zur gleichen Art gehören. Studierende kann man als äquivalent ansehen, wenn sie die gleiche Fächerkombination studieren. Vektoren kann man als äquivalent ansehen, wenn sie zum Nullpunkt den gleichen Abstand besitzen, etc. Eine Äquivalenzrelation ist typischerweise ein bestimmter Blick auf bestimmte Objekte, der unter Bezug auf eine gewisse Eigenschaft gewisse Objekte als gleich ansieht.
Bei den zuletzt genannten „alltäglichen“ Beispielen muss man etwas vorsichtig sein, da im Allgemeinen die Eigenschaften nicht so genau definiert werden. Im Alltag spielt Ähnlichkeit eine wichtigere Rolle als Gleichheit hinsichtlich einer bestimmten Eigenschaft. Die Ähnlichkeit ist aber keine Äquivalenzrelation, da sie zwar reflexiv und symmetrisch ist, aber nicht transitiv. Wenn und zueinander (knapp) ähnlich sind und und ebenso, so kann und schon knapp unähnlich sein (ebenso: lebt in der Nachbarschaft von, ist verwandt mit, etc.).
In der Wohnung liegt eine große Menge von Wäsche herum, die gewaschen werden soll. Natürlich kann nicht alles in den gleichen Waschgang, sondern nur Sachen, die sowohl gleichfarbig sind als auch die gleiche Waschtemperatur vertragen. Dies definiert insgesamt die Äquivalenzrelation der Waschgangverträglichkeit. Man kann jetzt die Wäsche dadurch sortieren, dass man waschgangverträgliche Sachen jeweils zu einem Haufen zusammenfasst. So entstehen verschiedene Haufen, die jeweils aus untereinander waschgangverträglichen Sachen bestehen, und zwei Sachen landen genau dann auf dem gleichen Haufen, wenn sie waschgangverträglich sind. Eine wichtige Beobachtung dabei ist, dass die Haufen nicht anhand einer vorgegebenen Liste von möglichen Waschkombinationen entstehen, sondern allein durch die Verträglichkeitsüberprüfung der Objekte untereinander.
Es sei eine Menge von geometrischen Objekten, beispielsweise eine Menge von -Ecken, gegeben, die sortiert werden sollen. Die Sortierung soll vollständig sein und jedem Objekt genau einen Typ zuweisen. Objekte, die den gleichen Typ repräsentieren, heißen äquivalent (im Sinne der Sortierung). Dafür gibt es verschiedene Möglichkeiten, die mehr oder weniger natürlich sind. Eine naheliegende Möglichkeit bei den -Ecken ist es, sie nach der Anzahl der Ecken zu sortieren. Zwei Objekte sind genau dann äquivalent, wenn sie die gleiche Anzahl an Ecken besitzen. Man kann sie aber auch nach der Farbe oder gemäß der Person, die die Figur gemalt hat, oder nach dem Flächeninhalt sortieren.
Oder man kann eine Menge von gegebenen Vierecken gemäß gewisser (geometrisch relevanter) Eigenschaften sortieren. Wenn man sich nur auf eine Eigenschaft konzentriert, beispielsweise, ob ein Viereck ein Rechteck ist oder nicht, so gibt es nur zwei Typen bzw. Klassen. Man kann natürlich auch eine feinere Einteilung vornehmen. Man beachte dabei allerdings, dass die mathematischen Begriffe inklusiv sind (ein Quadrat ist insbesondere ein Rechteck), eine vollständige Aufteilung ergibt sich also nur dann, wenn man Konzepte wie Quadrat, Rechteck, aber kein Quadrat, Parallelogramm, aber kein Rechteck, etc. verwendet. Es gibt keine natürliche optimale Aufteilung der Menge aller Vierecke. Ein typisches Phänomen bei solchen Klassifikationen ist, dass es einen großen Rest von Objekten gibt, der außerhalb jedes Regularitätskonzeptes liegt.
Es sei eine Menge von Aussagen. Dann ist die Äquivalenz, also die logische Gleichwertigkeit, von Aussagen eine Äquivalenzrelation auf dieser Menge. Beispielsweise ist die Aussage aufgrund des Kontrapositionsprinzips äquivalent zu , oder die Aussage „ ist ein Teiler von “ ist äquivalent zu „ ist ein Vielfaches von “ oder zu „ “.
Es sei eine Menge von Termen. Zwei Terme sind nur dann gleich, wenn sie Zeichen für Zeichen gleich sind. Wenn man allerdings einen mathematischen Kontext zugrunde legt, wie, dass sich alle Terme auf einen kommutativen Halbring beziehen sollen, so ergibt sich auf der Menge der Terme eine Äquivalenzrelation dadurch, dass man Terme als äquivalent (gleichwertig) ansieht, wenn sie bei jeder (oder einer bestimmten) Interpretation in einem kommutativen Halbring das gleiche Element liefern. In diesem Sinne sind und oder und gleichwertige Terme. Ebenso sind die Bruchterme und als Terme verschieden, ihr Zahlwert in ist aber gleich.
Es sei ein Körper und eine Variablenmenge fixiert. Wir betrachten die Menge der (endlichen) linearen Gleichungssysteme in diesen Variablen über diesem Körper. Die Äquivalenz von linearen Gleichungssystemen, also die Übereinstimmung der Lösungsmengen (als Teilmengen im ), ist dann offenbar eine Äquivalenzrelation auf dieser Menge.