Zum Inhalt springen

Analysis 2/Gemischte Satzabfrage/8/Aufgabe/Lösung

Aus Wikiversity


  1. Es sei ein nicht-leerer vollständiger metrischer Raum und
    eine stark kontrahierende Abbildung. Dann besitzt genau einen Fixpunkt.
  2. Es seien und euklidische Vektorräume, sei offen und es sei

    eine stetig differenzierbare Abbildung. Es sei ein Punkt derart, dass das totale Differential

    bijektiv ist. Dann gibt es eine offene Menge und eine offene Menge mit und mit derart, dass eine Bijektion

    induziert, und dass die Umkehrabbildung

    ebenfalls stetig differenzierbar ist.
  3. Es sei ein endlichdimensionaler reeller Vektorraum, ein reelles Intervall, eine offene Menge und

    ein Vektorfeld auf . Es sei vorausgesetzt, dass dieses Vektorfeld stetig sei und lokal einer Lipschitz-Bedingung genüge. Dann gibt es zu jedem ein offenes Intervall  mit derart, dass auf diesem Intervall eine eindeutige Lösung für das Anfangswertproblem

    existiert.