Bilinearform/Symmetrisch/Definitheit/Einführung/Textabschnitt
Es sei ein reeller Vektorraum mit einer symmetrischen Bilinearform . Diese Bilinearform heißt
- positiv definit, wenn für alle , ist.
- negativ definit, wenn für alle , ist.
- positiv semidefinit, wenn für alle ist.
- negativ semidefinit, wenn für alle ist.
- indefinit, wenn weder positiv semidefinit noch negativ semidefinit ist.
Positiv definite symmetrische Bilinearformen sind genau die reellen Skalarprodukte. Eine indefinite Form liegt vor, wenn es Vektoren und mit und gibt. Die Nullform ist zugleich positiv semidefinit und negativ semidefinit, aber weder positiv definit noch negativ definit.
Eine Bilinearform auf kann man auf einen Untervektorraum einschränken, wodurch sich eine Bilinearform auf ergibt. Wenn die ursprüngliche Form positiv definit ist, so überträgt sich dies auf die Einschränkung. Allerdings kann eine beliebige Form eingeschränkt auf gewisse Unterräume positiv definit werden und auf andere negativ definit. Dies führt zu folgender Definition.
Es sei ein endlichdimensionaler reeller Vektorraum mit einer symmetrischen Bilinearform . Man sagt, dass eine solche Bilinearform den Typ
besitzt, wobei
und
ist.
Bei einem Skalarprodukt auf einem -dimensionalen reellen Vektorraum ist der Typ . Nach Aufgabe ist stets
Die Matrix
ist die Gramsche Matrix zu einer symmetrischen Bilinearform auf dem , sagen wir bezüglich der Standardbasis. Die Einschränkung der Form auf ist positiv definit, die Einschränkung auf ist negativ definit, die Einschränkung auf ist die Nullform. Daher sind , es ist aber nicht unmittelbar klar, ob es nicht auch zweidimensionale Untervektorräume geben könnte, auf denen die Einschränkung positiv definit ist. Eine Untersuchung „aller“ Untervektorräume, wie es die Definition verlangt, scheint aussichtslos. Es gibt aber mehrere Möglichkeiten, den Typ einer symmetrischen Bilinearform zu bestimmen, ohne alle Untervektorräume von zu überblicken. Die folgende Aussage nennt man den Trägheitssatz von Sylvester.
Es sei ein endlichdimensionaler reeller Vektorraum mit einer symmetrischen Bilinearform vom Typ .
Dann ist die Gramsche Matrix von bezüglich einer jeden Orthogonalbasis eine Diagonalmatrix mit positiven und negativen Einträgen.
Bezüglich einer Orthogonalbasis von (die es nach Fakt gibt) hat die Gramsche Matrix natürlich Diagonalgestalt. Es sei die Anzahl der positiven Diagonaleinträge und die Anzahl der negativen Diagonaleinträge. Die Basis sei so geordnet, dass die ersten Diagonaleinträge positiv, die folgenden Diagonaleinträge negativ und die übrigen seien. Auf dem -dimensionalen Unterraum ist die eingeschränkte Bilinearform positiv definit, sodass gilt. Sei , auf diesem Unterraum ist die Bilinearform negativ semidefinit. Dabei ist , und diese beiden Räume sind orthogonal zueinander.
Angenommen, es gebe einen Unterraum , auf dem die Bilinearform positiv definit ist, und dessen Dimension größer als ist. Die Dimension von ist und daher ist nach Fakt.
Für einen Vektor , , ergibt sich aber direkt der Widerspruch und .
Indem man die Orthogonalvektoren umskaliert, kann man erreichen, dass in der Diagonalen nur die Werte vorkommen. Die auf dem durch die Diagonalmatrix mit Einsen, Minuseinsen und Nullen gegebene Form zeigt, dass jeder Typ, der
erfüllt, realisiert werden kann. Man spricht von der Standardform zum Typ auf dem .