Dachprodukt/Endlichdimensional/Basis/Fakt/Beweis/Aufgabe/Lösung

Aus Wikiversity


Wir zeigen zuerst, dass ein Erzeugendensystem vorliegt.  Da die Elemente der Form nach Fakt  (1) ein Erzeugendensystem von bilden, genügt es zu zeigen, dass man diese durch die angegebenen Elemente darstellen kann. Für jedes gibt es eine Darstellung , daher kann man nach Fakt  (4) die als Linearkombinationen von Dachprodukten der Basiselemente darstellen, wobei allerdings jede Reihenfolge vorkommen kann. Es sei also gegeben mit . Durch Vertauschen von benachbarten Vektoren kann man nach Fakt  (3) (unter Inkaufnahme eines anderen Vorzeichens) erreichen, dass die Indizes (nicht notwendigerweise streng) aufsteigend geordnet sind. Wenn sich ein Index wiederholt, so ist nach Fakt  (2) das Dachprodukt . Also wiederholt sich kein Index und diese Dachprodukte sind in der gewünschten Form.

Zum Nachweis der linearen Unabhängigkeit zeigen wir unter Verwendung von Fakt, dass es zu jeder -elementigen Teilmenge (mit ) eine -lineare Abbildung

gibt, die nicht auf abbildet, aber alle anderen in Frage stehenden Dachprodukte auf abbildet. Dazu genügt es nach Fakt, eine alternierende multilineare Abbildung

anzugeben mit , aber mit für jedes andere aufsteigende Indextupel. Es sei der von den , , erzeugte Untervektorraum von und der Restklassenraum. Dann bilden die Bilder der , , eine Basis von , und die Bilder von allen anderen -Teilmengen der gegebenen Basis bilden dort keine Basis, da mindestens ein Element davon auf geht. Wir betrachten nun die zusammengesetzte Abbildung

Diese Abbildung ist nach Fakt multilinear und nach Fakt alternierend. Nach Fakt

ist genau dann, wenn die Bilder von in keine Basis bilden.