Zum Inhalt springen

Elementarmatrizen/Einführung/Textabschnitt

Aus Wikiversity


Es sei ein Körper und sei eine -Matrix über . Dann nennt man die folgenden Manipulationen an elementare Zeilenumformungen.

  1. Vertauschung von zwei Zeilen.
  2. Multiplikation einer Zeile mit .
  3. Addition des -fachen einer Zeile zu einer anderen Zeile.


Es sei ein Körper. Mit bezeichnen wir diejenige -Matrix, die an der Stelle den Wert und sonst überall den Wert hat. Dann nennt man die folgenden Matrizen Elementarmatrizen.

  1. .
  2. .
  3. .

Ausgeschrieben sehen diese Elementarmatrizen folgendermaßen aus.

Elementarmatrizen sind invertierbar, siehe Aufgabe.



Es sei ein Körper und eine -Matrix mit Einträgen in . Dann hat die Multiplikation mit den -Elementarmatrizen von links mit folgende Wirkung.

  1. Vertauschen der -ten und der -ten Zeile von .
  2. Multiplikation der -ten Zeile von mit .
  3. Addition des -fachen der -ten Zeile von zur -ten Zeile ().

Beweis

Siehe Aufgabe.


Elementare Zeilenumformungen ändern nicht den Lösungsraum von homogenen linearen Gleichungssystemen, wie in Fakt gezeigt wurde.