Kommutative Ringtheorie/Theorie der noetherschen kommutativen Ringe/Textabschnitt
Ein kommutativer Ring heißt noethersch, wenn jedes Ideal darin endlich erzeugt ist.
Für einen kommutativen Ring sind folgende Aussagen äquivalent.
- ist noethersch.
- Jede aufsteigende Idealkette
wird stationär, d.h. es gibt ein mit .
(1) (2). Sei
eine aufsteigende Idealkette in . Wir betrachten die Vereinigung , die wieder ein Ideal in ist. Da noethersch ist, ist endlich erzeugt, d.h. . Da diese in der Vereinigung der Ideale liegen, und da die Ideale aufsteigend sind, muss es ein derart geben, dass liegt. Wegen
für muss hier Gleichheit gelten, sodass die Idealkette ab stationär ist.
(2) (1). Es sei ein Ideal in . Wir nehmen an, sei nicht endlich erzeugt, und konstruieren sukzessive eine unendliche echt aufsteigende Idealkette , wobei die alle endlich erzeugt sind. Es sei dazu
bereits konstruiert. Da endlich erzeugt ist, aber nicht, ist die Inklusion echt und es gibt ein Element
Dann setzt das Ideal die Idealkette echt aufsteigend fort.
Es sei ein noetherscher Ring.
Dann ist auch jeder Restklassenring noethersch.
Es sei ein Ideal und sei das Urbildideal davon. Dieses ist endlich erzeugt nach Voraussetzung, also . Die Restklassen dieser Erzeuger, also , bilden ein Idealerzeugendensystem von : Für ein Element gilt ja in und damit in .