Kurs:Einführung in die mathematische Logik/10/Klausur/kontrolle
Aufgabe | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Punkte | 3 | 3 | 1 | 2 | 3 | 3 | 6 | 4 | 3 | 1 | 2 | 4 | 3 | 3 | 0 | 0 | 4 | 0 | 5 | 4 | 54 |
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (1 Punkt)Referenznummer erstellen
Petra fliegt zu ihrer ersten internationalen Konferenz. Als sie auf dem Weg zum Flughafen ihre Wohnung (sie wohnt allein) verlässt und gerade die Wohnungstür zugemacht hat, merkt sie (eine der drei Möglichkeiten)
- Sie hat ihr Flugticket auf dem Schreibtisch vergessen.
- Sie hat ihre Schlüssel auf dem Schreibtisch vergessen.
- Sie hat ihren Reisepass auf dem Schreibtisch vergessen.
Was ist am schlimmsten?
Aufgabe * (2 Punkte)Referenznummer erstellen
Die Absetzmulde ist voll mit Schutt und soll durch eine leere Mulde ersetzt werden, die das Absetzkipperfahrzeug bringt, das auch die volle Mulde mitnehmen soll. Auf dem Fahrzeug und auf dem Garagenvorplatz, wo die volle Mulde steht, ist nur Platz für eine Mulde. Dafür kann die Straße als Zwischenablage genutzt werden. Wie viele Ladevorgänge sind vor Ort nötig, bis der Gesamtaustausch vollständig abgeschlossen ist?
Aufgabe * (3 Punkte)Referenznummer erstellen
Beweise den Satz, dass es unendlich viele Primzahlen gibt.
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (6 (2+4) Punkte)Referenznummer erstellen
Es seien und Aussagen.
- Zeige
- Zeige
Aufgabe * (4 Punkte)Referenznummer erstellen
Es sei eine Menge an Aussagenvariablen und eine maximal widerspruchsfreie Teilmenge der zugehörigen Sprache der Aussagenlogik. Zeige, dass für jedes entweder oder gilt.
Aufgabe * (3 (2+1) Punkte)Referenznummer erstellen
Es sei eine Menge und eine Teilmenge der Potenzmenge, die unter beliebigen Vereinigungen abgeschlossen ist.
- Zeige, dass induktiv geordnet ist.
- Zeige, dass ein größtes Element besitzt.
Aufgabe * (1 Punkt)Referenznummer erstellen
Wir betrachten den Satz „Diese Vorlesung versteht keine Sau“. Negiere diesen Satz durch eine Existenzaussage.
Aufgabe * (2 Punkte)Referenznummer erstellen
Aufgabe * (4 Punkte)Referenznummer erstellen
Beweise den Satz über die Vorgängereigenschaft in einem Peano-Halbring.
Aufgabe * (3 Punkte)Referenznummer erstellen
Es sei ein Dedekind-Peano-Modell der natürlichen Zahlen. Zeige, dass die Addition die Abziehregel erfüllt, also die Aussage, dass aus einer Gleichung die Gleichheit folgt (dabei dürfen grundlegendere Regeln wie die Assoziativität der Addition und ähnliches verwendet werden).
Aufgabe (3 (1+1+1) Punkte)Referenznummer erstellen
In einem Zugabteil sitzen die sechs Personen . Wir betrachten die folgenden Relationen:
- bedeutet, dass über die deutsche Bahn motzt.
- bedeutet, dass einen Fensterplatz hat.
- bedeutet, dass der Person die Fahrkarte klaut.
Es gelten ausschließlich die Beziehungen
- Charakterisiere umgangssprachlich die Person allein unter Bezugnahme auf die gegebenen Relationen.
- Charakterisiere prädikatenlogisch durch einen Ausdruck mit der einzigen freien Variablen und den Relationssymbolen die Person .
- Charakterisiere prädikatenlogisch durch einen Ausdruck mit der einzigen freien Variablen und den Relationssymbolen die Person .
Aufgabe (0 Punkte)Referenznummer erstellen
Aufgabe (0 Punkte)Referenznummer erstellen
Aufgabe * (4 Punkte)Referenznummer erstellen
Zeige, dass die erststufige Peano-Arithmetik eine vollständige widerspruchsfreie erststufige Erweiterung , also , besitzt, die von verschieden ist.
Aufgabe (0 Punkte)Referenznummer erstellen
Aufgabe * (5 Punkte)Referenznummer erstellen
Zeige, dass in einem gerichteten Graphen das modallogische Symmetrieaxiom genau dann gilt, wenn symmetrisch ist.
Aufgabe * (4 Punkte)Referenznummer erstellen
Es sei die durch das Löb-Axiom gegebene - Modallogik, also die Beweisbarkeitslogik. Wir setzen
(als Abkürzung für einen Widerspruch). Zeige, dass
ableitbar ist.