Zum Inhalt springen

Kurs:Grundkurs Mathematik (Osnabrück 2022-2023)/Teil I/Arbeitsblatt 4/kontrolle

Aus Wikiversity



Die Pausenaufgabe

Negiere die Aussage „Alle Kinder essen in der Pause ein Butterbrot oder einen Apfel“ durch eine Existenzaussage.




Übungsaufgaben
Lucy Sonnenschein

Wir betrachten den Satz „Lucy Sonnenschein tanzt auf allen Hochzeiten“. Negiere diesen Satz durch eine Existenzaussage.



Wir betrachten den Satz „Diese Vorlesung versteht keine Sau“. Negiere diesen Satz durch eine Existenzaussage.



Man formalisiere die folgenden Aussagen, indem man geeignete Prädikate erklärt. Man gebe die Negation der Aussagen (umgangssprachlich und formal) an.

  1. Alle Vögel sind schon da.
  2. Alle Wege führen nach Rom.
  3. Faulheit ist aller Laster Anfang.
  4. Alle Menschen werden Brüder, wo dein sanfter Flügel weilt.



Formuliere die folgenden einstelligen Prädikate innerhalb der natürlichen Zahlen allein mittels Gleichheit, Addition, Multiplikation und unter Verwendung von aussagenlogischen Junktoren und Quantoren.

  1. ist ein Vielfaches von .
  2. ist größer als .
  3. ist kleiner als .
  4. ist eine Quadratzahl.
  5. ist keine Quadratzahl.
  6. ist eine Primzahl.
  7. ist keine Primzahl.
  8. ist das Produkt von genau zwei verschiedenen Primzahlen.


Ein abstraktes und



ein konkretes Mengendiagramm.

Es sei die Menge der Großbuchstaben des lateinischen Alphabets, die Menge der Großbuchstaben des griechischen Alphabets und die Menge der Großbuchstaben des russischen Alphabets. Bestimme die folgenden Mengen.

  1. .
  2. .
  3. .
  4. .
  5. .



In der Pause isst Mustafa Müller einen Apfel und einen Schokoriegel, Heinz Ngolo isst einen Apfel und ein Butterbrot, Lucy Sonnenschein isst einen Apfel, Gabi Hochster isst ein Butterbrot und einen Schokoriegel und Frau Doris Maier-Sengupta isst einen Apfel, ein Butterbrot und einen Schokoriegel.

Die Mengen der Apfel- Butterbrot und Schokoriegelesser seien mit bezeichnet. Erstelle mengentheoretische Ausdrücke für die folgenden Beschreibungen und liste die Elemente der Mengen auf (die Grundmenge bestehe aus den fünf Personen).

  1. Isst einen Apfel.
  2. Isst keinen Apfel.
  3. Isst ein Butterbrot oder einen Schokoriegel.
  4. Isst einen Apfel aber keinen Schokoriegel.
  5. Isst einen Apfel und einen Schokoriegel aber kein Butterbrot.
  6. Isst ein Butterbrot, aber weder einen Apfel noch einen Schokoriegel.
  7. Isst nichts.



Skizziere ein Mengendiagramm zum Thema Stoff in der (Grund)-Schule, das die folgenden (oder ähnliche) Mengen und ihre Beziehungen abbildet.

    • Was habe ich in der Schule gelernt.
    • Was kam in meiner Schule dran.
    • Was wird an manchen Schulen gelehrt.
    • Was könnte an einer Schule gelehrt werden.
    • Was steht in den Schulbüchern.
    • An was kann ich mich erinnern.
    • An was können sich andere erinnern.
    • Was stand im Lehrplan.
    • Was haben die Lehrer verstanden.

Welche Inklusionen gelten, wie sehen Durchschnitte, Vereinigungen, Restmengen aus?



Skizziere ein Mengendiagramm, das zu vier Mengen alle möglichen Schnittmengen darstellt.



Die Hochschule „Tellerrand“ bietet lediglich Fächer an, nämlich Hethitologie, Assyriologie, Ägyptologie und Semitistik. Sie bietet lediglich -Fächer-Bachelor an in beliebiger Fächerkombination. Wie viele Fächerkombinationen gibt es (es wird nicht zwischen Erst- und Zweitfach unterschieden)? Skizziere ein Mengendiagramm, das die Studentenschaft mit ihren Fächern wiedergibt. Die zu einem Fach gehörenden Studenten und Studentinnen sollen dabei durch ein zusammenhängendes Gebiet dargestellt werden.



Es seien und Mengen. Beweise die Identität



Es seien und Mengen. Man beweise die folgenden Identitäten.



Man gebe für die folgenden Teilmengen der natürlichen Zahlen quantorenlogische Beschreibungen.

  1. Die Menge der geraden Zahlen,
  2. Die Menge der Zahlen, die durch vier teilbar sind,
  3. Die Menge der ungeraden Zahlen,
  4. Die Menge der Quadratzahlen,
  5. Die Menge der Primzahlen,
  6. Die Menge der Zahlen, die als Summe von drei Quadratzahlen geschrieben werden können.



Es seien und Mengen. Zeige, dass die folgenden Aussagen zueinander äquivalent sind.

  1. ,
  2. ,
  3. ,
  4. ,
  5. Es gibt eine Menge mit ,
  6. Es gibt eine Menge mit .



Aufgabe Aufgabe 4.15 ändern

Es seien und disjunkte Mengen und . Zeige, dass auch und disjunkt sind und dass

gilt.



Finde Parallelen zwischen Aussagen- und Quantorenlogik einerseits und Mengentheorie andererseits.




Aufgaben zum Abgeben

Wir verstehen die Aussage „Igel haben Stacheln“ als „Jeder Igel besitzt mindestens einen Stachel“. Welche der folgenden Aussagen sind äquivalent zur Negation dieser Aussage.

  1. Es gibt keinen Igel, der keine Stacheln besitzt.
  2. Alle Igel haben keine Stacheln.
  3. Es gibt einen Igel, der keinen Stachel besitzt.
  4. Es gibt einen Stachel, der zu keinem Igel gehört.
  5. Es gibt einen Igel ohne Stacheln.
  6. Es gibt viele Igel ohne Stacheln.
  7. Es existiert mindestens ein Igel, der mindestens einen Stachel besitzt.
  8. Es existiert mindestens ein Igel, der höchstens einen Stachel besitzt.
  9. Nicht jeder Igel hat mindestens einen Stachel.
  10. Stachelschweine haben auch Stacheln.



Formuliere die folgenden einstelligen Prädikate innerhalb der natürlichen Zahlen allein mittels Gleichheit, Addition, Multiplikation und unter Verwendung von aussagenlogischen Junktoren und Quantoren.

  1. ist ein Vielfaches von .
  2. ist eine ungerade Zahl.
  3. ist eine Kubikzahl.
  4. ist ein Vielfaches von und ein Vielfaches von .
  5. ist ein Vielfaches von oder ein Vielfaches von .
  6. besitzt bei Division durch den Rest .
  7. ist die Summe von zwei Quadratzahlen.
  8. ist die Summe von vier Quadratzahlen.



Bestimme für die Mengen

die Mengen

  1. ,
  2. ,
  3. ,
  4. ,
  5. ,
  6. ,
  7. ,
  8. .



Die Grundmenge sei die links abgebildete Menge an Vierecken. Beschreibe die folgenden Mengen durch Auflistung ihrer Elemente.

  1. .
  2. : Mindestens zwei Seiten sind parallel zueinander.
  3. : Alle Seiten sind gleichlang.
  4. : Je zwei gegenüberliegende Seiten sind parallel zueinander.
  5. : Die Diagonalen schneiden sich senkrecht.
  6. : An jedem Eck liegt ein rechter Winkel an.
  7. .
  8. .
  9. .
  10. .



Beweise die mengentheoretischen Fassungen einiger aristotelischer Syllogismen. Dabei bezeichnen Mengen.

  1. Modus Barbara: Aus und folgt .
  2. Modus Celarent: Aus und folgt .
  3. Modus Darii: Aus und folgt .
  4. Modus Ferio: Aus und folgt .
  5. Modus Baroco: Aus und folgt .