Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil II/Arbeitsblatt 33/latex

Aus Wikiversity

\setcounter{section}{33}






\zwischenueberschrift{Übungsaufgaben}




\inputaufgabe
{}
{

Bestimme die konstanten Lösungen der \definitionsverweis {gewöhnlichen Differentialgleichung}{}{}
\mavergleichskettedisp
{\vergleichskette
{y' }
{ =} { { \frac{ \sin \left( \cos t \right) - e^{ t^5 } }{ ( t^{14} +8) e^{-t^2} + \sqrt{t^2+ \pi} } } { \left( y^2+3y-5 \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{}

}
{} {}





\inputaufgabe
{}
{

Welche Substitution wird im Beweis zu Satz 33.2 durchgeführt?

}
{} {}




\inputaufgabe
{}
{

Skizziere die zugrunde liegenden \definitionsverweis {Vektorfelder}{}{} der Differentialgleichungen
\mathdisp {y'= { \frac{ 1 }{ y } } ,\, y' = ty^3 \text{ und } y' = -ty^3} { }
sowie die in Beispiel 33.4, Beispiel 33.7 und Beispiel 33.8 angegebenen Lösungskurven.

}
{} {}




\inputaufgabe
{}
{

Bestätige die in Beispiel 33.4, Beispiel 33.7 und Beispiel 33.8 gefundenen Lösungskurven der \definitionsverweis {Differentialgleichungen}{}{}
\mathdisp {y'= { \frac{ 1 }{ y } } ,\, y' = ty^3 \text{ und } y' = -ty^3} { }
durch \definitionsverweis {Ableiten}{}{.}

}
{} {}




\inputaufgabe
{}
{

Interpretiere eine \definitionsverweis {ortsunabhängige Differentialgleichung}{}{} als eine \definitionsverweis {Differentialgleichung mit getrennten Variablen}{}{} anhand des Lösungsansatzes für getrennte Variablen.

}
{} {}




\inputaufgabe
{}
{

Bestimme alle Lösungen der \definitionsverweis {Differentialgleichung}{}{}
\mavergleichskettedisp
{\vergleichskette
{y' }
{ =} {y }
{ } { }
{ } { }
{ } { }
} {}{}{} mit dem Lösungsansatz für getrennte Variablen. Erhält man dabei alle Lösungen?

}
{} {}




\inputaufgabe
{}
{

Bestimme alle Lösungen der \definitionsverweis {Differentialgleichung}{}{}
\mavergleichskettedisp
{\vergleichskette
{y' }
{ =} {y^n }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{n }
{ \geq }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit dem Lösungsansatz für getrennte Variablen.

}
{} {}




\inputaufgabe
{}
{

Bestimme alle Lösungen der \definitionsverweis {Differentialgleichung}{}{}
\mavergleichskettedisp
{\vergleichskette
{y' }
{ =} {y^n }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{n }
{ \leq }{-1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit dem Lösungsansatz für getrennte Variablen.

}
{} {}




\inputaufgabe
{}
{

Bestimme alle Lösungen der \definitionsverweis {Differentialgleichung}{}{}
\mathdisp {y'= e^y} { , }
mit dem Lösungsansatz für getrennte Variablen.

}
{} {}




\inputaufgabe
{}
{

Bestimme alle Lösungen der \definitionsverweis {Differentialgleichung}{}{}
\mathdisp {y'= { \frac{ 1 }{ \sin y } }} { , }
mit dem Lösungsansatz für getrennte Variablen.

}
{} {}





\inputaufgabe
{}
{

Löse die \definitionsverweis {Differentialgleichung}{}{}
\mavergleichskettedisp
{\vergleichskette
{ y' }
{ =} { ty }
{ } { }
{ } { }
{ } { }
} {}{}{} mit dem Lösungsansatz für getrennte Variablen.

}
{} {}




\inputaufgabegibtloesung
{}
{

Finde eine Lösung für die gewöhnliche Differentialgleichung
\mathdisp {y' = { \frac{ t }{ t^2-1 } } y^2} { }
mit \mathkor {} {t>1} {und} {y<0} {.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Bestimme die Lösungen der \definitionsverweis {Differentialgleichung}{}{} \zusatzklammer {
\mathl{y>0}{}} {} {}
\mathdisp {y'=t^2y^3} { }
mit dem Lösungsansatz für getrennte Variablen. Was ist der Definitionsbereich der Lösungen?

}
{} {}




\inputaufgabegibtloesung
{}
{

a) Bestimme eine Lösung der \definitionsverweis {Differentialgleichung}{}{}
\mathdisp {y'= { \frac{ t^3 }{ y^2 } }, \, y > 0, \, t> 0} { , }
mit dem Lösungsansatz für getrennte Variablen.

b) Bestimme die Lösung des \definitionsverweis {Anfangswertproblems}{}{}
\mathdisp {y'= { \frac{ t^3 }{ y^2 } } \text{ mit } y(1)=1} { . }

}
{} {}




\inputaufgabe
{}
{

Betrachte die in Beispiel 33.9 gefundenen Lösungen
\mavergleichskettedisp
{\vergleichskette
{ y(t) }
{ =} { { \frac{ g }{ 1+ \exp (-st) } } }
{ } { }
{ } { }
{ } { }
} {}{}{} der logistischen Differentialgleichung.

a) Skizziere diese Funktion \zusatzklammer {für geeignete \mathkor {} {s} {und} {g} {}} {} {.}

b) Bestimme die Grenzwerte für \mathkor {} {t \rightarrow \infty} {und} {t \rightarrow - \infty} {.}

c) Studiere das \definitionsverweis {Monotonieverhalten}{}{} dieser Funktionen.

d) Für welche $t$ besitzt die Ableitung von $y(t)$ ein \definitionsverweis {Maximum}{}{} \zusatzklammer {für die Funktion selbst bedeutet dies einen \definitionsverweis {Wendepunkt}{}{,} man spricht auch von einem \stichwort {Vitalitätsknick} {}} {} {.}

e) Über welche Symmetrien verfügen diese Funktionen?

}
{} {}




\inputaufgabe
{}
{

Bestimme das \definitionsverweis {Taylor-Polynom}{}{} vierten Grades im Nullpunkt zur \definitionsverweis {logistischen Funktion}{}{}
\mavergleichskettedisp
{\vergleichskette
{y(t) }
{ =} { { \frac{ 2 }{ 1 + e^{-t} } } }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{3}
{

Zeige, dass eine \definitionsverweis {Differentialgleichung}{}{} der Form
\mavergleichskettedisp
{\vergleichskette
{ y' }
{ =} { g(t)\cdot y^2 }
{ } { }
{ } { }
{ } { }
} {}{}{} mit einer \definitionsverweis {stetigen Funktion}{}{} \maabbeledisp {g} {\R} {\R } {t} {g(t) } {,} auf einem Intervall $I'$ die Lösungen
\mavergleichskettedisp
{\vergleichskette
{ y(t) }
{ =} { - { \frac{ 1 }{ G(t) } } }
{ } { }
{ } { }
{ } { }
} {}{}{} besitzt, wobei
\mathl{G}{} eine Stammfunktion zu $g$ mit
\mavergleichskette
{\vergleichskette
{G(I') }
{ \subseteq }{ \R_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sei.

}
{} {}




\inputaufgabe
{3}
{

Bestimme alle Lösungen der \definitionsverweis {Differentialgleichung}{}{}
\mathdisp {y'=ty^2,\, y> 0} { , }
mit dem Lösungsansatz für getrennte Variablen.

}
{} {}




\inputaufgabe
{4}
{

Bestimme alle Lösungen der \definitionsverweis {Differentialgleichung}{}{}
\mathdisp {y'=t^3y^3, \, y > 0} { , }
mit dem Lösungsansatz für getrennte Variablen.

}
{} {}




\inputaufgabe
{3}
{

Bestimme alle Lösungen der \definitionsverweis {Differentialgleichung}{}{}
\mathdisp {y'= { \left( \sin t -2t \right) } { \left( y^2+1 \right) } , \, y > 0} { , }
mit dem Lösungsansatz für getrennte Variablen. Welche Lösung hat das Anfangswertproblem $y(0)=\pi$?

}
{} {}




\inputaufgabe
{5}
{

Bestimme alle Lösungen der \definitionsverweis {Differentialgleichung}{}{}
\mavergleichskettedisp
{\vergleichskette
{y' }
{ =} { ty +t }
{ } { }
{ } { }
{ } { }
} {}{}{} mit

a) dem Lösungsansatz für inhomogene lineare Differentialgleichungen,

b) dem Lösungsansatz für getrennte Variablen.

}
{} {}