Zum Inhalt springen

Kurs:Topologische Invertierbarkeitskriterien/B-Regularität/Stetigkeit Cauchy-Produkt

Aus Wikiversity

Cauchy-Produkt - Stetigkeit

[Bearbeiten]

Betrachtet man zwei Polynome in dem normierten Raum .

Dann liefert die Definition der Norm für das Produkt :

Normeigenschaften

[Bearbeiten]

Für die folgende Abbildung gelten die Normeigenschaften, denn es gilt:

Homogenität

[Bearbeiten]

Definitheit

[Bearbeiten]

Gilt für , dass das Nullpolynom in , dann gibt ein mit , d.h., das Polynom muss wenigsten einen vom Nullvektor verschiedenen Koeffizienten haben und man erhältmit den Normeigenschaften von auch:

Dreiecksungleichung

[Bearbeiten]

Submultiplikativität

[Bearbeiten]

D.h., dass die Multiplikation auf stetig ist. Der Index bezeichnet die gewählte Basis für die Koeffizienten .

Siehe auch

[Bearbeiten]


Seiteninformation

[Bearbeiten]

Diese Lernresource können Sie als Wiki2Reveal-Foliensatz darstellen.

Wiki2Reveal

[Bearbeiten]

Dieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Kurs:Topologische Invertierbarkeitskriterien' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.