Zum Inhalt springen

Kurs:Zahlentheorie (Osnabrück 2008)/Vorlesung 20/latex

Aus Wikiversity

\setcounter{section}{20}




\inputdefinition
{}
{

Ein \definitionswort {quadratischer Zahlbereich}{} ist der \definitionsverweis {Ring der ganzen Zahlen}{}{} in einem \definitionsverweis {Erweiterungskörper}{}{} von $\Q$ vom \definitionsverweis {Grad}{}{} $2$.

}

Quadratische Zahlbereiche sind zwar die einfachsten Zahlbereiche, sind aber keinwegs einfach, sondern zeigen bereits die Reichhaltigkeit der algebraischen Zahlentheorie.

Wir interessieren uns in der algebraischen Zahlentheorie insbesondere für folgende Fragen.

\aufzaehlungdrei{Wann ist ein \definitionsverweis {Zahlbereich}{}{} $R$ ein \definitionsverweis {Hauptidealbereich}{}{} und wann ist er \definitionsverweis {faktoriell}{}{?} }{Wenn $R$ kein Hauptidealbereich ist, gibt es dann andere Versionen, die die eindeutige Primfaktorzerlegung ersetzen \zusatzklammer {Ja: Lokal und auf Idealebene} {} {.} }{Wenn $R$ kein Hauptidealbereich ist, kann man dann die Abweichung von der Eigenschaft, ein Hauptidealbereich zu sein, in irgendeiner Form messen? \zusatzklammer {Ja: Durch die sogenannte Klassengruppe} {} {.}}





\inputdefinition
{}
{

Eine ganze Zahl heißt \definitionswort {quadratfrei}{,} wenn jeder Primfaktor von ihr nur mit einem einfachen \definitionsverweis {Exponenten}{}{} vorkommt.

}

\inputnotation{}{

Zu einer \definitionsverweis {quadratfreien}{}{} Zahl
\mavergleichskette
{\vergleichskette
{D }
{ \neq }{0,1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} bezeichnet man den zugehörigen \definitionsverweis {quadratischen Zahlbereich}{}{,} also den \definitionsverweis {Ring der ganzen Zahlen}{}{} in
\mathl{\Q[\sqrt{D}]}{,} mit
\mathdisp {A_D} { . }

}

Eine quadratischen Körpererweiterungen der rationalen Zahlen wird beschrieben durch ein normiertes irreduzibles Polynom, das man durch quadratisches Ergänzen auf die Form
\mathl{X^2-q}{} bringen kann. Durch Multiplikation mit einem Quadrat \zusatzklammer {siehe Aufgabe 12.8} {} {} kann man $q$ durch eine quadratfreie ganze Zahl ersetzen. Ein großer Unterschied besteht je nachdem, ob $D$ positiv oder negativ ist. Im positiven Fall ist $\sqrt{D}$ eine reelle irrationale Zahl, im negativen Fall handelt es sich um eine imaginäre Zahl. Man definiert:




\inputdefinition
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{D }
{ \neq }{0,1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \definitionsverweis {quadratfrei}{}{} und sei $A_D$ der zugehörige \definitionsverweis {quadratische Zahlbereich}{}{.} Dann heißt $A_D$ \definitionswort {reell-quadratisch}{,} wenn $D$ positiv ist, und \definitionswort {imaginär-quadratisch}{,} wenn $D$ negativ ist.

}




\inputdefinition
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{D }
{ \neq }{0,1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {quadratfreie}{}{} Zahl und sei
\mathl{\Q[\sqrt{D}]}{} die zugehörige quadratische \definitionsverweis {Körpererweiterung}{}{} und $A_D$ der zugehörige \definitionsverweis {quadratische Zahlbereich}{}{.} Dann wird der Automorphismus \zusatzklammer {auf
\mathl{\Q[\sqrt{D}]}{,} auf
\mathl{\Z[\sqrt{D}]}{} und auf $A_D$} {} {}
\mathdisp {a+b \sqrt{D} \longmapsto a -b \sqrt{D}} { }
als \definitionswort {Konjugation}{} bezeichnet.

}

Wir bezeichnen die Konjugation von $z$ mit $\bar{z}$.






\inputbemerkung
{}
{

Im \definitionsverweis {imaginär-quadratischen}{}{} Fall, wenn also
\mavergleichskette
{\vergleichskette
{D }
{ < }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist, so ist
\mavergleichskette
{\vergleichskette
{ \sqrt{D} }
{ = }{ { \mathrm i} \sqrt{-D} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mathl{\sqrt{-D}}{} reell. Die \definitionsverweis {Konjugation}{}{} schickt dies dann auf
\mavergleichskette
{\vergleichskette
{ - \sqrt{D} }
{ = }{ - { \mathrm i} \sqrt{-D} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} sodass diese Konjugation mit der \definitionsverweis {komplexen Konjugation}{}{} übereinstimmt. Im reell-quadratischen Fall allerdings hat die Konjugation
\mathl{\sqrt{D} \mapsto -\sqrt{D}}{} nichts mit der komplexen Konjugation zu tun.

}






\inputbemerkung
{}
{

Bei einer \definitionsverweis {endlichen Körpererweiterung}{}{}
\mavergleichskette
{\vergleichskette
{K }
{ \subseteq }{L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} werden \definitionsverweis {Norm}{}{} und \definitionsverweis {Spur}{}{} eines Elementes
\mavergleichskette
{\vergleichskette
{x }
{ \in }{L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} über die Determinante und die Spur der Multiplikationsabbildung \maabb {f} {L} {L } {} definiert. Im Fall einer quadratischen Erweiterung
\mavergleichskettedisp
{\vergleichskette
{\Q }
{ \subset} { \Q[\sqrt{D}] }
{ } { }
{ } { }
{ } { }
} {}{}{} sind diese beiden Invarianten einfach zu berechnen: Da $1$ und $\sqrt{D}$ eine $\Q$-Basis bilden, ist
\mavergleichskette
{\vergleichskette
{z }
{ = }{a+b\sqrt{D} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und damit ist die Multiplikationsmatrix durch
\mathdisp {\begin{pmatrix} a & bD \\ b & a \end{pmatrix}} { }
gegeben. Somit ist
\mavergleichskettedisp
{\vergleichskette
{ N(z) }
{ =} { a^2-b^2 D }
{ =} { (a+b \sqrt{D})(a -b \sqrt{D}) }
{ =} { z \overline{z} }
{ } { }
} {}{}{} und
\mavergleichskettedisp
{\vergleichskette
{ S(z) }
{ =} { 2a }
{ =} { (a+b \sqrt{D}) + (a -b \sqrt{D}) }
{ =} { z + \overline{z} }
{ } { }
} {}{}{.}

}





\inputfaktbeweis
{Zahlentheorie/Quadratischer Zahlbereich/Ganz, wenn Spur und Norm ganz ist/Fakt}
{Lemma}
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{\Q }
{ \subset }{L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {quadratische Körpererweiterung}{}{} und
\mavergleichskette
{\vergleichskette
{f }
{ \in }{L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Dann ist $f$ genau dann \definitionsverweis {ganz}{}{} über $\Z$, wenn sowohl die Norm als auch die Spur von $f$ zu $\Z$ gehören.

}
{

Dies folgt aus Satz 18.4, aus Satz 15.15, und aus der Gestalt des Minimalpolynoms \zusatzklammer {nämlich gleich
\mathl{f^2 -S(f)f +N(f)}{,} falls
\mavergleichskettek
{\vergleichskettek
{f }
{ \notin }{\Q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {} im quadratischen Fall.

}





\inputfaktbeweis
{Quadratischer Zahlbereich/Beschreibung/Fakt}
{Satz}
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{D }
{ \neq }{ 0,1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {quadratfreie Zahl}{}{} und $A_D$ der zugehörige \definitionsverweis {quadratische Zahlbereich}{}{.} Dann gilt
\mathdisp {A_D = {\Z}[\sqrt{D}], \text{ wenn } D= 2,3 \mod 4} { }
und
\mathdisp {A_D= {\Z}[ { \frac{ 1+\sqrt{D} }{ 2 } } ], \text{ wenn } D= 1 \mod 4} { . }

}
{

Sei
\mavergleichskette
{\vergleichskette
{x }
{ \in }{A_D }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gegeben,
\mavergleichskette
{\vergleichskette
{x }
{ = }{a+b \sqrt{D} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{a,b }
{ \in }{ \Q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Aus Lemma 20.8 folgt
\mathdisp {N(x)= a^2- D b^2 \in {\Z} \text{ und } S(x)=2a \in {\Z}} { . }
Aus der zweiten Gleichung folgt, dass
\mavergleichskette
{\vergleichskette
{a }
{ = }{ { \frac{ n }{ 2 } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{n }
{ \in }{\Z }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist. Sei
\mavergleichskette
{\vergleichskette
{b }
{ = }{ { \frac{ r }{ s } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit $r,s$ teilerfremd,
\mavergleichskette
{\vergleichskette
{s }
{ \geq }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Die erste Gleichung wird dann zu
\mavergleichskette
{\vergleichskette
{ { \left( { \frac{ n }{ 2 } } \right) }^2 - D { \left( { \frac{ r }{ s } } \right) }^2 }
{ = }{ k }
{ \in }{ \Z }
{ }{ }
{ }{ }
} {}{}{} bzw.
\mavergleichskette
{\vergleichskette
{ n^2 - 4 D { \left( { \frac{ r }{ s } } \right) }^2 }
{ = }{ 4k }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Dies bedeutet, da $r$ und $s$ teilerfremd sind, dass $4D$ von $s^2$ geteilt wird. Da ferner $D$ quadratfrei ist, folgt, dass
\mavergleichskette
{\vergleichskette
{s }
{ = }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} oder
\mavergleichskette
{\vergleichskette
{s }
{ = }{2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist. Im ersten Fall ist $n$ ein Vielfaches von $2$ \zusatzklammer {da $n^2$ ein Vielfaches von $4$ ist} {} {,} sodass
\mavergleichskette
{\vergleichskette
{x }
{ \in }{\Z[\sqrt{D}] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist.

Es sei also
\mavergleichskette
{\vergleichskette
{s }
{ = }{2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} was zur Bedingung
\mavergleichskettedisp
{\vergleichskette
{ n^2 - D r^2 }
{ =} { 4k }
{ } { }
{ } { }
{ } { }
} {}{}{} führt. Wir betrachten diese Gleichung modulo $4$. Bei $n$ und $r$ gerade ist
\mavergleichskette
{\vergleichskette
{x }
{ \in }{\Z[\sqrt{D}] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Die einzigen Quadrate in
\mathl{\Z/(4)}{} sind $0$ und $1$, sodass für
\mavergleichskette
{\vergleichskette
{D }
{ = }{2,3 \mod 4 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} keine weitere Lösung existiert. Für
\mavergleichskette
{\vergleichskette
{D }
{ = }{1\mod 4 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} hingegen gibt es auch noch die Lösung
\mavergleichskette
{\vergleichskette
{n }
{ = }{1\mod 2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{r }
{ = }{1 \mod 2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} also $n$ und $r$ beide ungerade. Diese Lösungen gehören alle zu
\mathl{{\Z}[\frac{1+\sqrt{D} }{2}]}{.}

Die umgekehrte Inklusion
\mavergleichskette
{\vergleichskette
{ \Z[\sqrt{D}] }
{ \subseteq }{ A_D }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist klar, sei also
\mavergleichskette
{\vergleichskette
{D }
{ = }{1 \mod 4 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Dann ist aber
\mavergleichskettedisp
{\vergleichskette
{ { \left( \frac{1 + \sqrt{D} }{2} \right) }^2 - \frac{1 + \sqrt{D} }{2} }
{ =} { \frac{1+ D +2 \sqrt{D}-2-2 \sqrt{D} }{4} }
{ =} { \frac{D-1}{4} }
{ \in} { \Z }
{ } { }
} {}{}{,} und dabei ist
\mathl{\frac{D-1}{4}}{} eine ganze Zahl, sodass dies sofort eine Ganzheitsgleichung über $\Z$ ergibt.

}


In den im vorstehenden Satz beschriebenen Fällen kann man jeweils den Ring der ganzen Zahlen durch eine Gleichung beschreiben. Für
\mathl{D= 2,3 \mod 4}{} ist
\mavergleichskettedisp
{\vergleichskette
{A_D }
{ \cong} { \Z[X]/(X^2-D) }
{ } { }
{ } { }
{ } { }
} {}{}{.} Für
\mathl{D= 1 \mod 4}{} setzt man häufig
\mathl{\omega= \frac{1+\sqrt{D} }{2}}{} für den Algebra-Erzeuger. Dieser Erzeuger erfüllt
\mathl{\omega ^2 - \omega - \frac{D-1}{4}}{.} Wir haben also
\mavergleichskettedisp
{\vergleichskette
{A_D }
{ \cong} { {\Z}[\omega]/( \omega^2- \omega - \frac{D-1}{4}) }
{ } { }
{ } { }
{ } { }
} {}{}{.} Wie werden häufiger in beiden Fällen diese Ganzheitsbasis
\mathl{1, \omega}{} nennen, mit
\mathl{\omega= \sqrt{D}}{} im ersten Fall und
\mathl{\omega=\frac{1 + \sqrt{D} }{2}}{} im zweiten Fall.





\inputfaktbeweis
{Zahlentheorie/Quadratischer Zahlbereich/Diskriminante/Fakt}
{Lemma}
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{D }
{ \neq }{0,1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {quadratfreie Zahl}{}{} und $A_D$ der zugehörige \definitionsverweis {quadratische Zahlbereich}{}{.} Dann ist die \definitionsverweis {Diskriminante}{}{} von $A_D$ gleich
\mathdisp {\triangle = 4D , \text{ wenn } D= 2,3 \mod 4} { }
und
\mathdisp {\triangle =D, \text{ wenn } D= 1 \mod 4} { . }

}
{

Im Fall
\mavergleichskette
{\vergleichskette
{D }
{ = }{2,3 \mod 4 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist nach Satz 20.9
\mavergleichskette
{\vergleichskette
{ A_D }
{ = }{ \Z[X]/(X^2-D) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und daher bilden $1$ und $X$ eine Ganzheitsbasis. Die möglichen Produkte zu dieser Basis sind in Matrixschreibweise
\mathdisp {\begin{pmatrix} 1 & X \\ X & D \end{pmatrix}} { . }
Wendet man darauf komponentenweise die \definitionsverweis {Spur}{}{} an so erhält man
\mathdisp {\begin{pmatrix} 2 & 0 \\ 0 & 2D \end{pmatrix}} { }
und die Determinante davon ist $4D$.

Im Fall
\mavergleichskette
{\vergleichskette
{D }
{ = }{1 \mod 4 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist hingegen
\mavergleichskettedisp
{\vergleichskette
{ A_D }
{ =} { \Z[\omega]/ { \left( \omega^2-\omega - \frac{D-1}{4} \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} und eine Ganzheitsbasis ist $1$ und $\omega$. Die Matrix der Basisprodukte ist dann
\mathdisp {\begin{pmatrix} 1 & \omega \\ \omega & \omega + { \frac{ D-1 }{ 4 } } \end{pmatrix}} { . }
Wendet man darauf die Spur an \zusatzklammer {die Spur von $\omega$ ist $1$} {} {,} so erhält man
\mathdisp {\begin{pmatrix} 2 & 1 \\ 1 & 1 + { \frac{ D-1 }{ 2 } } \end{pmatrix}} { }
und die Determinante davon ist
\mavergleichskettedisp
{\vergleichskette
{ 2 { \left( 1+ \frac{D-1}{2} \right) } -1 }
{ =} { 2 +D-1-1 }
{ =} { D }
{ } { }
{ } { }
} {}{}{.}

}







\inputbemerkung
{}
{

Das Verhalten von Primzahlen in einer quadratischen Erweiterung lässt sich aus der oben erzielten Beschreibung mit Gleichungen erhalten.

Generell wird bei
\mathl{R=\Z[X]/(F)}{} das Verhalten von $p$ in $R$ durch
\mathl{( \Z/(p) )[X]/(\overline{F})}{} beschrieben, wobei $\overline{F}$ bedeutet, dass die ganzzahligen Koeffizienten durch ihre Restklasse modulo $p$ ersetzt werden. Wir nennen den Ring
\mavergleichskettedisp
{\vergleichskette
{ R/(p) }
{ =} { \Z/(p) [X]/(\overline{F}) }
{ =} { \Z[X](p, F) }
{ } { }
{ } { }
} {}{}{} den \stichwort {Faserring} {} über $p$.

Bei
\mathl{D=2,3 \mod 4}{} hat man einfach
\mavergleichskettedisp
{\vergleichskette
{R/(p) }
{ =} {\Z/(p) [X]/(X^2-D ) }
{ } { }
{ } { }
{ } { }
} {}{}{,} wobei man $D$ durch
\mathl{D \mod p}{} ersetzen kann. Die prinzipiellen Möglichkeiten werden in Lemma 19.9 beschrieben. Ob über $p$ ein oder zwei Primideale liegen hängt davon ab, ob $D$ ein Quadratrest modulo $p$ ist und ob $p$ ungerade ist, und $p$ ist prim genau dann, wenn $D$ kein Quadratrest modulo $p$ ist.

Bei
\mathl{D=1 \mod 4}{} hat man
\mavergleichskettedisp
{\vergleichskette
{ R/(p) }
{ =} { \Z/(p) [\omega]/ { \left( \omega^2-\omega - \frac{D-1}{4} \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Ist $p$ ungerade, so ist $2$ eine Einheit in
\mathl{\Z/(p)}{} und man kann quadratisch ergänzen. Dann ist
\mavergleichskettedisp
{\vergleichskette
{ \omega^2-\omega - \frac{D-1}{4} }
{ =} { { \left( \omega - \frac{1}{2} \right) }^2 - \frac{1}{4}- \frac{D-1}{4} }
{ =} { { \left( \omega - \frac{1}{2} \right) }^2 - \frac{D}{4} }
{ } { }
{ } { }
} {}{}{.} Der Faserring hat daher die Form
\mathl{\Z/(p) [Y]/ { \left( Y^2- \frac{D}{4} \right) }}{} und nach Multiplikation der Gleichung mit der Einheit $4$ kann man dies als
\mathl{\Z/(p) [Z]/(Z^2-D)}{} schreiben, sodass es wieder darum geht, ob $D$ ein Quadratrest modulo $p$ ist.

Ist hingegen
\mathl{p=2}{,} so schreibt sich die Gleichung als
\mathl{\omega^2+\omega + c}{,} wobei
\mathl{c=1}{} ist, wenn
\mathl{D=5 \mod 8}{} ist, und
\mathl{c=0}{,} wenn
\mathl{D=1 \mod 8}{.} Im ersten Fall ist die Gleichung irreduzibel über $\Z/(2)$ und $2$ ist prim in $R$, im zweiten Fall ist die Gleichung reduzibel und $2$ zerfällt in zwei Primideale.

}

Damit können wir entscheiden, wie viele Primideale in $A_D$ über einer Primzahl $p$ liegen. Wir wollen darüber hinaus genau beschreiben, wie das Zerlegungsverhalten einer Primzahl in einer quadratischen Erweiterung aussieht, und beginnen mit der Situation, wo $p$ die Diskriminante teilt.





\inputfaktbeweis
{Zahlentheorie/Quadratischer Zahlbereich/Teiler der Diskriminante/verzweigt/Fakt}
{Lemma}
{}
{

Es sei
\mathl{D \neq 0,1}{} eine \definitionsverweis {quadratfreie Zahl}{}{} und $A_D$ der zugehörige \definitionsverweis {quadratische Zahlbereich}{}{.} Die \definitionsverweis {Primzahl}{}{} $p$ sei ein Teiler der \definitionsverweis {Diskriminante}{}{} $\triangle$ von $A_D$. Dann gibt es oberhalb von $p$ genau ein \definitionsverweis {Primideal}{}{} ${\mathfrak p}$ und es ist
\mavergleichskette
{\vergleichskette
{ {\mathfrak p}^2 }
{ = }{(p)A_D }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{

Es sei zunächst
\mathl{D= 2,3 \mod 4}{,} sodass
\mavergleichskette
{\vergleichskette
{ \triangle }
{ = }{ 4D }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} nach Lemma 20.10 ist und als Primteiler $p$ der Diskriminante $2$ und die Teiler von $D$ in Frage kommen. Es ist
\mavergleichskettedisp
{\vergleichskette
{ A_D/(p) }
{ =} { (\Z[X]/(X^2-D)/(p)) }
{ =} { ( \Z/(p)) [X]/ { \left( X^2-D \right) } }
{ } { }
{ } { }
} {}{}{.} Bei
\mathl{p {{|}} D}{} steht hier
\mathl{( \Z/(p) ) [X]/(X^2)}{} und dieser Ring hat das einzige Primideal
\mathl{(X)}{} mit
\mavergleichskette
{\vergleichskette
{ X^2 }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Diesem Primideal entspricht in $A_D$ das Primideal
\mavergleichskette
{\vergleichskette
{ {\mathfrak p} }
{ = }{ (p,X) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Es ist
\mavergleichskette
{\vergleichskette
{ {\mathfrak p}^2 }
{ = }{(p) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Einerseits gilt für
\mavergleichskette
{\vergleichskette
{ f }
{ \in }{ {\mathfrak p}^2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} im Faserring modulo $p$ die Beziehung
\mavergleichskette
{\vergleichskette
{ f }
{ \in }{ (X^2) }
{ = }{ 0 }
{ }{ }
{ }{ }
} {}{}{,} woraus
\mavergleichskette
{\vergleichskette
{ f }
{ \in }{ (p) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} folgt. Andererseits ist
\mavergleichskette
{\vergleichskette
{X^2 }
{ = }{D }
{ = }{ up }
{ }{ }
{ }{ }
} {}{}{} \zusatzklammer {in $A_D$} {} {} mit
\mavergleichskette
{\vergleichskette
{ u }
{ \in }{ \Z }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Da $D$ quadratfrei ist, ist $u$ teilerfremd zu $p$ und daher kann man mit
\mavergleichskette
{\vergleichskette
{1 }
{ = }{ ru+sp }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} schreiben
\mavergleichskettedisp
{\vergleichskette
{p }
{ =} { p(ru+sp) }
{ =} { rup+sp^2 }
{ =} { rX^2+sp^2 }
{ \in} { {\mathfrak p}^2 }
} {}{}{.} Bei
\mavergleichskette
{\vergleichskette
{ p }
{ = }{ 2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt in
\mathl{\Z/(2) [X]}{} die Beziehung
\mavergleichskette
{\vergleichskette
{ (X-D)^2 }
{ = }{ X^2-D^2 }
{ = }{ X^2-D }
{ }{ }
{ }{ }
} {}{}{,} sodass eine analoge Situation vorliegt.

Es sei jetzt
\mathl{D= 1 \mod 4}{} und sei $p$ ein Primteiler von
\mathl{\triangle= D}{.} Es ist
\mavergleichskettedisp
{\vergleichskette
{ A_D/(p) }
{ =} { { \left( \Z[\omega]/ { \left( \omega^2- \omega - \frac{D-1}{4} \right) } \right) } /(p) }
{ =} { ( \Z/(p)) [\omega]/ { \left( \omega^2- \omega - { \frac{ D-1 }{ 4 } } \right) } }
{ } { }
{ } { }
} {}{}{.} Da $D$ ungerade ist, ist $2$ eine Einheit in
\mathl{\Z/(p)}{,} sodass man die Gleichung modulo $p$ als
\mavergleichskettedisp
{\vergleichskette
{ { \left( \omega- \frac{1}{2} \right) }^2 - \frac{1}{4} - \frac{D-1}{4} }
{ =} { { \left( \omega- \frac{1}{2} \right) }^2 -\frac{D}{4} }
{ =} { { \left( \omega- \frac{1}{2} \right) }^2 }
{ } { }
{ } { }
} {}{}{} schreiben kann, sodass wieder eine analoge Situation vorliegt.

}


Zu einem Ideal $\mathfrak a$ bezeichnet $\bar{\mathfrak a}$ das konjugierte Ideal, das aus allen konjugierten Elementen aus $\mathfrak a$ besteht.





\inputfaktbeweis
{Zahlentheorie/Quadratischer Zahlbereich/Primzahlverhalten/Fakt}
{Satz}
{}
{

\faktsituation {Es sei
\mavergleichskette
{\vergleichskette
{D }
{ \neq }{ 0,1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {quadratfreie Zahl}{}{} und $A_D$ der zugehörige \definitionsverweis {quadratische Zahlbereich}{}{.}}
\faktfolgerung {Dann gibt es für eine \definitionsverweis {Primzahl}{}{} $p$ die folgenden drei Möglichkeiten: \aufzaehlungdrei{$p$ ist prim in $A_D$. }{Es gibt ein \definitionsverweis {Primideal}{}{} ${\mathfrak p}$ in $A_D$ derart, dass
\mavergleichskette
{\vergleichskette
{(p) }
{ = }{ {\mathfrak p}^2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist. }{Es gibt ein Primideal ${\mathfrak p}$ in $A_D$ derart, dass
\mavergleichskette
{\vergleichskette
{(p) }
{ = }{ {\mathfrak p} \overline{ {\mathfrak p} } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{ {\mathfrak p} }
{ \neq }{ \overline{ {\mathfrak p} } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist. }}
\faktzusatz {}
\faktzusatz {}

}
{

Es sei
\mathl{R=A_D}{.} Wir betrachten den Restklassenring
\mathl{L=R/(p)}{,} der eine quadratische Erweiterung des Körpers
\mathl{\Z/(p)}{} ist. Damit gibt es nach Lemma 19.9 die drei Möglichkeiten: \aufzaehlungdrei{$L$ ist ein \definitionsverweis {Körper}{}{.} }{$L$ ist von der Form
\mavergleichskette
{\vergleichskette
{L }
{ = }{ \Z/(p) [\epsilon]/\epsilon^2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{$L$ ist der \definitionsverweis {Produktring}{}{}
\mavergleichskette
{\vergleichskette
{L }
{ \cong }{ \Z/(p) \times \Z/(p) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} } Im ersten Fall ist $p$ ein Primelement in $R$. Im zweiten Fall besitzt $L$ genau einen Restklassenkörper als einzigen nicht-trivialen Restklassenring, nämlich
\mathl{\Z/(p)}{.} Nach der in Aufgabe 16.10 bewiesenen Korrespondenz gibt es also genau ein Primideal ${\mathfrak p}$ mit
\mavergleichskette
{\vergleichskette
{ (p) }
{ \subseteq }{ {\mathfrak p} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \zusatzklammer {das dem Ideal $(\epsilon)$ im Restklassenring entspricht} {} {.} Dann ist
\mavergleichskette
{\vergleichskette
{ {\mathfrak p} }
{ = }{ (p, \epsilon) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \zusatzklammer {wobei hier $\epsilon$ ein Repräsentant in $R$ sei} {} {} und
\mavergleichskette
{\vergleichskette
{ {\mathfrak p}^2 }
{ = }{ (p) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

Im dritten Fall besitzt $L$ zwei Restklassenkörper und damit zwei maximale Ideale, deren Durchschnitt, das zugleich deren Produkt ist, das Nullideal ist. Zurückübersetzt nach $R$ heißt das, dass es zwei verschiedene Primideale ${\mathfrak p}$ und ${\mathfrak q}$ gibt mit
\mathl{(p) \subset {\mathfrak p}, {\mathfrak q}}{} und mit
\mathl{(p) = {\mathfrak p} \cap {\mathfrak q}}{.} Nach Aufgabe 18.8 ist
\mathl{{\mathfrak p} \cap {\mathfrak q} = {\mathfrak p} \cdot {\mathfrak q}}{.} Mit
\mathl{(p) \subset {\mathfrak p}}{} ist auch
\mathl{(p) \subset \overline{ {\mathfrak p} }}{.} Wir zeigen, dass
\mathl{\overline{ {\mathfrak p} } = {\mathfrak q}}{} ist, d.h., dass die beiden Primideale über $p$ konjugiert vorliegen. Da nach Lemma 20.12 bei
\mathl{p {{|}} \triangle}{} der zweite Fall vorliegt, wissen wir, dass $p$ die Diskriminate nicht teilt.

Bei
\mathl{D=2,3 \mod 4}{} ist $p$ ungerade und $D$ ist ein Quadratrest modulo $p$. Es seien $a$ und $-a$ die beiden verschiedenen \zusatzklammer {!} {} {} Quadratwurzeln modulo $p$. Dann werden die beiden Primideale durch
\mathl{(p, a \pm \sqrt{D})}{} beschrieben, und diese sind konjugiert.

Bei
\mathl{D=1 \mod 4}{} und $p$ ungerade ist nach der Bemerkung 20.11 über die explizite Beschreibung der Faserringe $D$ wieder ein Quadratrest modulo $p$. Es seien $a$ und $-a$ die beiden verschiedenen \zusatzklammer {!} {} {} Quadratwurzeln von $D$ modulo $p$. Dann ist
\mavergleichskette
{\vergleichskette
{ \omega - \frac{1}{2} }
{ = }{ \pm \frac{a}{2} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und daher sind die beiden Primideale gleich
\mavergleichskette
{\vergleichskette
{ { \left( p, \omega \pm a -\frac{1}{2} \right) } }
{ = }{ { \left( p, \frac{a \pm \sqrt{D} }{2} \right) } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} sodass wieder ein konjugiertes Paar vorliegt.

Bei
\mathl{D=1 \mod 4}{} und
\mathl{p=2}{} ist nach der Fakt
\mathl{D = 1 \mod 8}{.} Die Nullstellen des beschreibenden Polynoms sind dann $0$ und $1$. Daher sind die Primideale darüber gegeben durch
\mathl{(2, \omega)}{} und
\mathl{(2, \omega - 1)}{.} Es ist
\mavergleichskette
{\vergleichskette
{(2,\omega) }
{ = }{ { \left( 2, \frac{\sqrt{D}+1}{2} \right) } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ (2, \omega - 1) }
{ = }{ { \left( 2, \frac{\sqrt{D}+1}{2} - 1 \right) } }
{ = }{ { \left( 2, \frac{\sqrt{D}-1}{2} \right) } }
{ }{ }
{ }{ }
} {}{}{,} sodass wieder ein konjugiertes Paar vorliegt.

}