Lineare Abbildung/Trigonalisierbar/Charakterisierungen/1/Fakt

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Charakterisierung von trigonalisierbaren Abbildungen

Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei

eine lineare Abbildung. Dann sind folgende Aussagen äquivalent.

  1. ist trigonalisierbar.
  2. Es gibt eine -invariante Fahne.
  3. Das charakteristische Polynom zerfällt in Linearfaktoren.
  4. Das Minimalpolynom zerfällt in Linearfaktoren.

Wenn trigonalisierbar ist und bezüglich einer Basis durch die Matrix beschrieben wird, so gibt es eine invertierbare Matrix (es sei ) derart, dass eine obere Dreiecksmatrix ist.

Beweis 1, 2, Alternativen Beweis erstellen