Mathematik 1/Gemischte Satzabfrage/9/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen
  1. Es sei ein Körper, und seien -Vektorräume und

    sei eine -lineare Abbildung und sei endlichdimensional.

    Dann gilt

  2. Es sei

    eine Reihe von reellen Zahlen. Es gebe eine reelle Zahl mit und ein mit

    für alle (insbesondere sei für ).

    Dann konvergiert die Reihe absolut.

  3. Es seien reelle Zahlen und sei eine stetige Funktion. Es sei eine reelle Zahl zwischen und .

    Dann gibt es ein mit .

  4. Es sei ein reelles Intervall und sei

    eine stetige Funktion. Es sei und es sei

    die zugehörige Integralfunktion.

    Dann ist differenzierbar und es gilt

    für alle .