Maximale untere Treppenfunktion/Identität/n Teilungspunkte/Beispiel

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Wir wollen für die Funktion

und das Einheitsintervall bestimmen, für welche Unterteilungspunkte das Treppenintegral der zugehörigen (-stufigen) unteren Treppenfunktion maximal wird. Das Treppenintegral wird durch die Funktion

beschrieben. Die partiellen Ableitungen dieser Funktion sind

für und

Wir bestimmen die kritischen Punkte, indem wir die partiellen Ableitungen gleich setzen. Die ersten Gleichungen ergeben sukzessive die Bedingungen

für alle . Dies zeigt man durch Induktion, der Induktionsanfang () ist trivial, folgt direkt aus der ersten Gleichung und der Induktionsschritt ergibt sich aus

Aus der letzen Gleichung folgt schließlich

und somit . Der einzige kritische Punkt liegt also in der äquidistanten Unterteilung vor. Die Hesse-Form ist (unabhängig vom Punkt) gleich

Diese Matrix ist negativ definit nach Fakt. Daher liegt in der äquidistanten Unterteilung nach Fakt das Maximum vor.