Zum Inhalt springen

Polynomring/Körper/Lemma von Bezout/Textabschnitt

Aus Wikiversity


Es sei ein Körper und seien Polynome über . Es sei ein größter gemeinsamer Teiler der .

Dann gibt es eine Darstellung

mit .

Wir betrachten die Menge aller Linearkombinationen

Dies ist ein Ideal von , wie man direkt überprüft. Nach Fakt ist dieses Ideal ein Hauptideal, also

mit einem gewissen Polynom . Es ist ein gemeinsamer Teiler der . Wegen ist nämlich

d.h. ist ein Teiler von jedem . Aufgrund einer ähnlichen Überlegung ist

für alle und damit auch

Also ist

Da nach Voraussetzung den maximalen Grad unter allen gemeinsamen Teilern besitzt, muss eine Konstante sein. Also ist

und insbesondere . Also ist eine Linearkombination der .



Es sei ein Körper und seien teilerfremde Polynome über .

Dann gibt es eine Darstellung

mit .

Dies folgt direkt aus Fakt.


Zu gegebenen Polynomen lässt sich sowohl der größte gemeinsame Teiler bestimmen als auch eine Darstellung

wie in Fakt explizit angegeben. Dazu kann man sich auf beschränken. Es sei der Grad von mindestens so groß wie der Grad von . Die Division mit Rest liefert

mit einem Restpolynom, dessen Grad kleiner als der Grad von ist bzw. das ist. Entscheidend ist, dass die Ideale

und damit der größte gemeinsame Teiler von und und von und übereinstimmen. Nun führt man die Division mit Rest durch, bei der durch mit dem Rest geteilt wird, wobei wiederum das Ideal mit dem Ausgangsideal übereinstimmt. So erhält man eine Folge von Restpolynomen

wobei zwei benachbarte Reste das gleiche Ideal erzeugen. Es ist dann (also der letzte von verschiedene Rest) der größte gemeinsame Teiler von und . Eine Darstellung von als Linearkombination der erhält man, indem man die Gleichungen, die die Division mit Rest beschreiben, von unten nach oben zurückarbeitet.


Das in der vorstehenden Bemerkung beschriebene Verfahren heißt euklidischer Algorithmus. Es gilt entsprechend auch für ganze Zahlen.


Wir möchten den größten gemeinsamen Teiler für die beiden Polynome und aus berechnen. Dazu führt man die Division mit Rest durch und erhält

Daher sind die beiden Polynome teilerfremd. Eine Darstellung der ist