Schema/Lokal freie Garben und Vektorbündel/Äquivalenz/Fakt/Beweis

Aus Wikiversity
Beweis

Wir zeigen zuerst, dass jede lokal freie Garbe isomorph zu einer Garbe der Schnitte in einem Vektorbündel ist. Eine lokal freie Garbe vom Rang ist durch eine offene Überdeckung (wobei wir die als affin annehmen können) und Isomorphismen

gegeben. Die Hintereinanderschaltung

ist nach Fakt durch mit

gegeben. Dabei ist mit

Ferner ist die Determinante der Matrix eine Einheit in Dies definiert über

einen linearen -Algebraisomorphismus

und einen Schemaisomorphismus

der von der in der Definition eines geometrischen Vektorbündels geforderten Form ist. Wir betrachten das Verklebungsdatum von beringten Räumen

Die Kozykelbedingung ist dabei erfüllt, da die Daten von dem globalen Objekt herrühren. Aufgrund von Fakt gibt es ein Schema , das dieses Verklebungsdatum realisiert. Die lokalen Projektionen

verkleben dabei zu einem Schemamorphismus

Aufgrund der Konstruktion handelt es sich um ein geometrisches Vektorbündel über . Es sei die Garbe der Schnitte zu . Wir behaupten, dass es einen natürlichen Isomorphismus

gibt. Wegen der Konstruktion gibt es natürliche Garbenisomorphismen

für jede offene Menge , und deren Einschränkungen auf die Durchschnitte stimmen überein. Nach Fakt gibt es daher einen globalen Garbenhomomorphismus, und dieser ist nach Fakt ein Isomorphismus.

Die Injektivität der Zuordnung ergibt sich, da sich ein Vektorbündel (bis auf Isomomorphie) durch seine Garbe der Schnitte durch die beschriebene Konstruktion rekonstruieren lässt. Für die Aussage über die Homomorphismen siehe Aufgabe, Aufgabe und Aufgabe.