Ebene polynomiale Parametrisierungen/Einführung/Beispiele/Textabschnitt

Aus Wikiversity


Satz  

Es sei ein Körper und seien zwei Polynome.

Dann gibt es ein Polynom , , mit . D.h. das Bild einer polynomial parametrisierten Kurve liegt in einer ebenen algebraischen Kurve .

Wenn unendlich ist und nicht beide konstant sind, so ist der Zariski-Abschluss des Bildes eine irreduzible Kurve .

Beweis  

Es seien und die Grade von und . Wir berechnen die Monome

Dies sind Polynome in vom Grad . Zu und gibt es solche Monome. Die Monome , leben also allesamt in dem -dimensionalen -Vektorraum, der von erzeugt wird. Bei muss es also eine nicht-triviale lineare Abhängigkeit zwischen diesen geben. Diese ergibt ein Polynom mit .

Die angegebene numerische Bedingung lässt sich mit hinreichend groß erfüllen.

Von nun an sei unendlich. Der Zariski-Abschluss des Bildes ist nach Fakt und irreduzibel nach Fakt. Da unendlich ist und die Abbildung nicht konstant ist, muss wegen der Irreduzibilität auch unendlich viele Punkte enthalten. Nach Fakt ist ein Primideal und enthält nach dem ersten Teil ein , . Da faktoriell ist, muss auch ein Primfaktor von dazu gehören, so dass wir annehmen können, dass ein Primpolynom ist. Wir haben die Inklusion

Für ein ist

unendlich, so dass es nach Fakt einen gemeinsamen nichtkonstanten Faktor von und geben muss. Da prim ist, muss ein Vielfaches von sein und .



Beispiel  

Wir betrachten die Kurve, die durch die Parametrisierung

gegeben ist. Es ist und . Eine einfache Addition ergibt

Daher können wir

schreiben. Ausmultiplizieren ergibt insgesamt die Gleichung



Beispiel  

Wir betrachten die durch

gegebene Abbildung

Für die beiden Punkte ergibt sich der Wert . Für alle anderen Stellen kann man

schreiben. D.h. dass aus den Bildwerten rekonstruierbar ist, und das bedeutet, dass die Abbildung dort injektiv ist. Die Bildkurve ist also eine Kurve, die sich an genau einer Stelle überschneidet.

Wir bestimmen die Kurvengleichung, und schreiben und . Es ist und

Das beschreibende Polynom ist also