Holomorphe Funktion/C/Lokale Beschreibung/Textabschnitt

Aus Wikiversity


Satz  

Es sei eine zusammenhängende offene Teilmenge, ein Punkt und eine nichtkonstante holomorphe Funktion.

Dann gibt es eine offene Umgebung derart, dass die Einschränkung von auf biholomorph äquivalent zu einer Potenzabbildung ist.

Das bedeutet, dass es ein und biholomorphe Abbildungen

mit eine offene Kreisscheibe um und eine Verschiebung

derart gibt, dass

auf gilt (wobei die Variable auf bezeichnet).

Beweis  

Wir wählen für eine Kreisscheibenumgebung von , auf der durch eine Potenzreihe dargestellt wird. Die Potenzreihe sei mit und . Durch eine Verschiebung im Ausgangsbereich und im Bildbereich können wir und annehmen. Die Potenzreihe kann man also als

mit schreiben. Nach Fakt gibt es eine holomorphe Funktion mit und damit ist auch . Die Abbildung besitzt die Ableitung und hat in den Wert . Daher ist nach Fakt in einer geeigneten offenen Umgebung von biholomorph zu einer offenen Kreisscheibe . Mit der Variablen auf ist dann


Man kann also sagen, dass nach einem biholomorphen Koordinatenwechsel lokal jede holomorphe Abbildung eine Potenzierung ist. Diese lokale Beschreibung der Funktion nennen wir ihre lokale Normalform, und das nennen wir den lokalen Exponenten der Funktion im Punkt . Man spricht, je nach Kontext, auch vom Verzweigungsindex oder von der Ordnung. Wenn die Ableitung ist, so kann man den Satz über die lokale Umkehrabbildung anwenden und in einem solchen Punkt ist , dies ist der Standardfall. Nur für die Punkte einer diskreten Teilmenge kann sein, siehe Aufgabe.