Isomorphe Vektorräume/Einführung/Textabschnitt
Es sei ein Körper und es seien und Vektorräume über . Eine bijektive, lineare Abbildung
heißt Isomorphismus.
Ein Isomorphismus von nach heißt Automorphismus.
Es sei ein Körper. Zwei -Vektorräume und heißen isomorph, wenn es einen Isomorphismus von nach gibt.
Es sei ein Körper und es seien und endlichdimensionale -Vektorräume.
Dann sind und genau dann zueinander isomorph, wenn ihre Dimension übereinstimmt.
Insbesondere ist ein -dimensionaler -Vektorraum isomorph zum .
Beweis
Eine Isomorphie zwischen einem -dimensionalen Vektorraum und dem Standardraum ist im Wesentlichen äquivalent zur Wahl einer Basis in . Zu einer Basis
gehört die lineare Abbildung
die also den Standardraum in den Vektorraum abbildet, indem sie dem -ten Standardvektor den -ten Basisvektor aus der gegebenen Basis zuordnet. Dies definiert nach Fakt eine eindeutige lineare Abbildung, die aufgrund von Aufgabe bijektiv ist. Es handelt sich dabei einfach um die Abbildung
Die Umkehrabbildung
ist ebenfalls linear und heißt die zur Basis gehörende Koordinatenabbildung. Die -te Komponente davon, also die zusammengesetzte Abbildung
heißt -te Koordinatenfunktion. Sie wird mit bezeichnet, und gibt zu einem Vektor in der eindeutigen Darstellung
die Koordinate aus. Man beachte, dass die lineare Abbildung von der gesamten Basis abhängt, nicht nur von dem Vektor .
Wenn umgekehrt ein Isomorphismus
gegeben ist, so sind die Bilder
eine Basis von .