Kommutativer Ring/Halbring und Z bekannt/Einführung/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Definition  

Eine Menge heißt ein Ring, wenn es zwei Verknüpfungen (genannt Addition und Multiplikation)

und (nicht notwendigerweise verschiedene) Elemente gibt, die die folgenden Eigenschaften erfüllen.

  1. Axiome der Addition
    1. Assoziativgesetz: Für alle gilt .
    2. Kommutativgesetz: Für alle gilt .
    3. ist das neutrale Element der Addition, d.h. für alle ist .
    4. Existenz des Negativen: Zu jedem gibt es ein Element mit .
  2. Axiome der Multiplikation
    1. Assoziativgesetz: Für alle gilt .
    2. ist das neutrale Element der Multiplikation, d.h. für alle ist .
  3. Distributivgesetz: Für alle gilt und .


Definition  

Ein Ring heißt kommutativ, wenn die Multiplikation kommutativ ist.

Ein kommutativer Ring ist insbesondere ein kommutativer Halbring, alle für Halbringe geltenden Eigenschaften wie beispielsweise die allgemeine binomische Formel gelten insbesondere auch für kommutative Ringe. Der wesentliche Unterschied liegt in der zusätzlichen Bedingung (1.4), der Existenz des Negativen. Dieses Negative ist eindeutig bestimmt: Wenn nämlich sowohl als auch die Eigenschaft haben, dass ihre Addition zu den Wert ergibt, so erhält man direkt

Für das zu jedem eindeutig bestimmte Negative schreiben wir . Wegen

ist auch das Negative zu , also . Bei stimmt diese Definition mit der Definition überein, wie der Beweis der Existenz des Negativen in Fakt zeigt.

Mit diesem neuen Begriff können wir festhalten.


Satz  

Die ganzen Zahlen

bilden einen kommutativen Ring.

Beweis  

Dies folgt unmittelbar aus Fakt und Fakt.


In einem kommutativen Ring und Elemente verwendet man

als abkürzende Schreibweise. Man spricht von der Subtraktion bzw. der Differenz. Die Subtraktion ist also die Addition von mit dem Negativen (also ) von . Bei natürlichen Zahlen mit stimmt die innerhalb der natürlichen Zahlen genommenen Differenz

mit der hier in über das Negative genommenen Differenz überein. Dies beruht darauf, dass es sich jeweils um eine Lösung der Gleichung

handelt und diese Gleichung eine eindeutige Lösung besitzt.



Lemma  

Es sei ein kommutativer Ring und seien Elemente aus .

Dann gelten folgende Aussagen.

  1. (Annullationsregel),

  2. (Vorzeichenregel),

Beweis  

  1. Es ist . Durch beidseitiges Abziehen (also Addition mit ) von ergibt sich die Behauptung.
  2. nach Teil (1). Daher ist das (eindeutig bestimmte) Negative von .

  3. Nach (2) ist und wegen folgt die Behauptung.
  4. Dies folgt auch aus dem bisher Bewiesenen.


Wie in jedem kommutativen Halbring kann man in jedem kommutativen Ring Ausdrücke der Form mit und sinnvoll interpretieren, und zwar ist die -fache Summe von mit sich selbst. Auch die Potenzschreibweise wird wieder verwendet und es gelten insbesondere die in Fakt formulierten Potenzgesetze. Darüber hinaus kann man auch für negative Zahlen den Ausdruck interpretieren, nämlich als

Insbesondere ist

in jedem kommutativen Ring sinnvoll interpretierbar. Dabei gelten naheliegende Rechengesetze, siehe Aufgabe.