Konstruierbare Zahlen/Quadratische Erweiterungen/Textabschnitt

Aus Wikiversity

Unter einer reell-quadratischen Körpererweiterung eines Körpers verstehen wir eine quadratische Körpererweiterung mit , die sich also innerhalb der reellen Zahlen abspielt. Eine solche Körpererweiterung ist immer durch die Adjunktion einer Quadratwurzel einer positiven reellen Zahl  mit , gegeben. Es gilt die Isomorphie



Lemma  

Sei ein Körper. Es sei ein Punkt, der sich aus in einem Schritt konstruieren lässt.

Dann liegen die Koordinaten von in einer reell-quadratischen Körpererweiterung von .

Beweis  

Wir gehen die drei Möglichkeiten durch, einen Punkt aus in einem Schritt zu konstruieren. Es sei der Schnittpunkt von zwei verschiedenen Geraden und , die über definiert sind. Es sei also und mit . Dann gehört der Schnittpunkt zu und seine Koordinaten gehören zu .
Es sei eine über definierte Gerade und ein über definierter Kreis. Dann ist und mit . Wir können annehmen, dass ist, so dass die Geradengleichung auf die Form gebracht werden kann. Einsetzen von dieser Gleichung in die Kreisgleichung ergibt eine quadratische Gleichung für über . Die reellen Koordinaten der (eventuell komplexen) Lösungen davon liegen in einer quadratischen Erweiterung von . Das gilt dann auch für die zugehörigen Lösungen für .
Es seien nun und zwei über definierte verschiedene Kreise. Es seien und die Kreisgleichungen. Ein Schnittpunkt der beiden Kreise muss auch jede Linearkombination der beiden Gleichungen erfüllen. Wir betrachten die Differenz der beiden Gleichungen, die die Gestalt

besitzt. D.h. dies ist eine Geradengleichung, und die Schnittpunkte der beiden Kreise stimmen mit den Schnittpunkten eines Kreises mit dieser Geraden überein. Wir sind also wieder im zweiten Fall.




Beispiel  

Wir betrachten die beiden Kreise mit den Kreisgleichungen

Die Differenz der beiden Gleichungen ist

bzw.

Die Schnittpunkte der beiden Kreise müssen also auch auf der durch gegebenen Geraden liegen. Setzt man diese Geradenbedingung in die erste Kreisgleichung ein, so erhält man

also




Satz  

Es sei eine komplexe Zahl. Dann ist eine konstruierbare Zahl genau dann,

wenn es eine Kette von reell-quadratischen Körpererweiterungen

derart ist, dass die Koordinaten von zu gehören.

Beweis  

Es sei eine konstruierbare komplexe Zahl. D.h. es gibt eine Folge von Punkten derart, dass aus den Vorgängerpunkten in einem Schritt konstruierbar ist. Es sei und es sei

der von den Koordinaten der Punkte erzeugte Unterkörper von . Nach Fakt liegt in einer reell-quadratischen Körpererweiterung von (und zwar ist oder ist eine reell-quadratische Körpererweiterung von ). Die Koordinaten von liegen also in , und ist das Endglied in einer Folge von quadratischen Körpererweiterungen von .
Es sei umgekehrt angenommen, dass die Koordinaten eines Punktes in einer Kette von reell-quadratischen Körpererweiterungen von liegen. Wir zeigen durch Induktion über die Länge der Körperkette, dass die Zahlen in einer solchen Kette aus quadratischen Körpererweiterungen konstruierbar sind. Bei ist , und diese Zahlen sind konstruierbar. Es sei also schon gezeigt, dass alle Zahlen aus konstruierbar sind, und sei eine reell-quadratische Körpererweiterung. Nach Fakt ist mit einer positiven reellen Zahl . Nach Induktionsvoraussetzung ist konstruierbar und nach Fakt ist konstruierbar. Daher ist auch jede Zahl  mit , konstruierbar. Damit sind die Koordinaten von konstruierbar und somit ist nach Fakt auch selbst konstruierbar.