Polynome/Körper/Division mit Rest/Rationales Beispiel/Textabschnitt
Es sei ein Körper und sei der Polynomring über . Es seien Polynome mit .
Dann gibt es eindeutig bestimmte Polynome mit
Wir beweisen die Existenzaussage durch Induktion über den Grad von . Wenn der Grad von größer als der Grad von ist, so ist und eine Lösung, sodass wir dies nicht weiter betrachten müssen. Bei ist nach der Vorbemerkung auch , also ist ein konstantes Polynom, und damit ist (da und ein Körper ist) und eine Lösung. Es sei nun und die Aussage für kleineren Grad schon bewiesen. Wir schreiben und mit . Dann gilt mit die Beziehung
Dieses Polynom hat einen Grad kleiner als und darauf können wir die Induktionsvoraussetzung anwenden, d.h. es gibt und mit
Daraus ergibt sich insgesamt
sodass also
und
eine Lösung ist.
Zur Eindeutigkeit sei
mit den angegebenen Bedingungen. Dann ist
.
Da die Differenz einen Grad kleiner als besitzt, ist aufgrund der Gradeigenschaften diese Gleichung nur bei
und
lösbar.
Die Berechnung der Polynome
und
heißt Polynomdivision. Das Polynom ist genau dann ein Teiler von , wenn bei der Division mit Rest von durch der Rest gleich ist. Der Beweis des Satzes ist konstruktiv, d.h. es wird in ihm ein Verfahren beschrieben, mit der man die Division mit Rest berechnen kann. Dazu muss man die Rechenoperationen des Grundkörpers beherrschen. Wir geben dazu ein Beispiel.
Wir führen die Polynomdivision
(über ) durch. Es wird also ein Polynom vom Grad durch ein Polynom vom Grad dividiert, d.h. dass der Quotient und auch der Rest (maximal) vom Grad sind. Im ersten Schritt überlegt man, mit welchem Term man multiplizieren muss, damit das Produkt mit im Leitterm übereinstimmt. Das ist offenbar . Das Produkt ist
Die Differenz von zu diesem Produkt ist
Mit diesem Polynom, nennen wir es , setzen wir die Division durch fort. Um Übereinstimmung im Leitkoeffizienten zu erhalten, muss man mit multiplizieren. Dies ergibt
Die Differenz zu ist somit
Dies ist das Restpolynom und somit ist insgesamt
Es sei ein Körper und sei der Polynomring über . Es sei ein Polynom und .
Dann ist genau dann eine Nullstelle von , wenn ein Vielfaches des linearen Polynoms ist.
Wenn ein Vielfaches von ist, so kann man
mit einem weiteren Polynom schreiben. Einsetzen ergibt
Im Allgemeinen gibt es aufgrund der Division mit Rest eine Darstellung
wobei oder aber den Grad besitzt, also so oder so eine Konstante ist. Einsetzen ergibt
Wenn also ist, so muss der Rest sein, und das bedeutet, dass ist.
Es sei ein Körper und sei der Polynomring über . Es sei ein Polynom () vom Grad .
Dann besitzt maximal Nullstellen.
Wir beweisen die Aussage durch Induktion über . Für ist die Aussage offensichtlich richtig. Es sei also und die Aussage sei für kleinere Grade bereits bewiesen. Es sei eine Nullstelle von (falls keine Nullstelle besitzt, sind wir direkt fertig). Dann ist nach Fakt und hat den Grad , sodass wir auf die Induktionsvoraussetzung anwenden können. Das Polynom hat also maximal Nullstellen. Für gilt . Dies kann nach Fakt (5) nur dann sein, wenn einer der Faktoren ist, sodass eine Nullstelle von gleich ist oder aber eine Nullstelle von ist. Es gibt also maximal Nullstellen von .