Riemannsche Zetafunktion/Kehrwertdivergenz/Einführung/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Definition  

Die Riemannsche -Funktion ist für mit Realteil durch

definiert.


Zeta.png



Lemma  

Sei eine endliche Menge von Primzahlen und sei eine komplexe Zahl mit . Es sei die Menge aller natürlichen Zahlen, die sich als Produkt von Primzahlen aus darstellen lassen. Dann ist

Beweis  

Sei . Es ist nach Voraussetzung über den Realteil. Unter Verwendung der geometrischen Reihe ergibt sich


Aus dieser Aussage ergibt sich sofort ein neuer Beweis dafür, dass es unendlich viele Primzahlen gibt. Wenn es nämlich nur endlich viele Primzahlen gäbe, so könnte man als die endliche Menge aller Primzahlen ansetzen. Es wäre dann . Für stünde dann links eine reelle Zahl, und rechts würde die Summe über alle natürlichen Kehrwerte stehen. Dies ist aber die harmonische Reihe, und diese divergiert!



Satz  

Sei eine komplexe Zahl mit . Dann gilt für die Riemannsche -Funktion die Produktdarstellung

Beweis  

Dies folgt aus Fakt, wenn man für die Menge der ersten Primzahlen überhaupt ansetzt und dann gegen unendlich laufen lässt. Die Konvergenz der linken Seite, also die Wohldefiniertheit der -Funktion, sichert dabei auch die Konvergenz der rechten Seite.




Korollar  

Das unendliche Produkt

divergiert.

Beweis  

Dies folgt aus Fakt für . Man hat die Gleichheit

wobei die ersten Primzahlen umfasse. Für ergibt sich rechts die harmonische Reihe, die bekanntlich divergiert. Also divergiert auch das Produkt links.


Wir können nun die oben formulierte Frage beantworten.



Satz  

Die Reihe der Kehrwerte der Primzahlen, also

divergiert.

Beweis  

Das Produkt divergiert für aufgrund von Fakt und ist insbesondere unbeschränkt. Daher ist auch der natürliche Logarithmus davon unbeschränkt. Dieser ist

Die Potenzreihenentwicklung des natürlichen Logarithmus ist

für . Angewendet auf die vorstehende Situation ergibt das

Für die hinteren Summanden hat man die Abschätzungen

wobei hinten wieder die geometrische Reihe benutzt wurde. Damit ist insgesamt

Da die Summe der reziproken Quadrate konvergiert, ist diese Gesamtsumme beschränkt. Daher ist die Summe unbeschränkt, was die Behauptung ist.