Stetige Funktion/Fortsetzung/K/Einführung/Textabschnitt

Aus Wikiversity


Definition  

Es sei eine Teilmenge,

eine stetige Funktion und es sei . Dann heißt eine Abbildung

eine stetige Fortsetzung von , wenn stetig ist und für alle gilt.



Satz  

Es sei eine Teilmenge,

eine stetige Funktion und es sei , wobei aus Berührpunkten von bestehe. Für jedes existiere der Grenzwert .

Dann ist die durch

definierte Abbildung eine stetige Fortsetzung von auf .

Beweis  

Es sei und vorgegeben. Da ein Berührpunkt von ist und da der Grenzwert von in existiert (bei existiert er aufgrund der Stetigkeit), gibt es ein mit für alle . Wir behaupten, dass die Stetigkeitsbedingung mit der Aufwandsgenauigkeit erfüllt ist. Es sei also ein mit gegeben. Es gibt ein mit und mit . Wegen der ersten Abschätzung und der Voraussetzung an ist . Insgesamt ist daher



Satz  

Es sei eine Teilmenge und die Menge aller Berührpunkte von . Es sei

eine gleichmäßig stetige Funktion.

Dann gibt es eine eindeutig bestimmte stetige Fortsetzung

Beweis  

Aufgrund von Fakt genügt es zu zeigen, dass der Grenzwert für jedes existiert. Es sei eine Folge in , die gegen konvergiert. Wir zeigen, dass dann auch die Bildfolge konvergiert. Da diese Bildfolge in ist, und vollständig ist, genügt es zu zeigen, dass eine Cauchy-Folge vorliegt. Sei vorgegeben. Wegen der gleichmäßigen Stetigkeit von gibt es ein derart, dass für alle mit ist. Wegen der Konvergenz der Folge handelt es sich nach Fakt um eine Cauchy-Folge und daher gibt es ein mit für alle . Somit gilt

für alle .
Wir müssen nun noch zeigen, dass für jede gegen konvergente Folge der Grenzwert der Bildfolge gleich ist. Dies ergibt sich aber sofort, wenn man für zwei Folgen und die Folge betrachtet, die ebenfalls gegen konvergiert, und für die der Limes der Bildfolge mit den Limiten der Teilbildfolgen übereinstimmt.



Korollar  

Es sei

eine gleichmäßig stetige Funktion.

Dann gibt es eine eindeutig bestimmte stetige Fortsetzung

Beweis  

Dies folgt direkt aus Fakt und aus .